Integer linear programming (ILP) is a versatile modeling and optimization technique that is increasingly used in non-traditional ways in biology, with the potential to transform biological computation. However, few biologists know about it. This how-to and why-do text introduces ILP through the lens of computational and systems biology. It uses in-depth examples from genomics, phylogenetics, RNA, protein folding, network analysis, cancer, ecology, co-evolution, DNA sequencing, sequence analysis, pedigree and sibling inference, haplotyping, and more, to establish the power of ILP. This book aims to teach the logic of modeling and solving problems with ILP, and to teach the practical 'work flow' involved in using ILP in biology. Written for a wide audience, with no biological or computational prerequisites, this book is appropriate for entry-level and advanced courses aimed at biological and computational students, and as a source for specialists. Numerous exercises and accompanying software (in Python and Perl) demonstrate the concepts.
Rezensionen / Stimmen
'In his classic accessible teaching style, Gusfield teaches us why integer linear programming (ILP) is the most useful mathematical idea you've probably never heard of. Read this book to learn how what you don't know can hurt you, and why ILP should be your new favorite method.' Trey Ideker, University of California, San Diego 'Once again, Dan Gusfield has written an accessible book that shows that algorithmic rigor need not be sacrificed when solving real-world problems. He explains integer linear programming in the context of real-world biology. In doing so, the reader has an enriched understanding of both algorithmic details and the challenges in modern biology.' Russ Altman, Stanford University, California
Sprache
Verlagsort
Zielgruppe
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Illustrationen
Worked examples or Exercises; 123 Line drawings, black and white
Maße
Höhe: 259 mm
Breite: 185 mm
Dicke: 30 mm
Gewicht
ISBN-13
978-1-108-42176-8 (9781108421768)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Dan Gusfield is Distinguished Professor of Computer Science at the University of California, Davis, and a Fellow of the IEEE, the ACM, and the International Society of Computational Biology (ISCB). His previous books include The Stable Marriage Problem (1989, with Robert W. Irving), Algorithms on Strings, Trees and Sequences (Cambridge, 1997) and ReCombinatorics (2014). He has served as chair of the computer science department at UCD (2000-04), and was the founding Editor-in-Chief of the IEEE/ACM Transactions of Computational Biology and Bioinformatics until January 2009. He has been instrumental in the definition and development of the intersection between computer science and computational biology.
Autor*in
University of California, Davis
Preface; Part I: 1. A fly-over introduction; 2. Biological networks and graphs; 3. Character compatibility; 4. Near-cliques; 5. Parsimony in phylogenetics; 6. RNA folding; 7. Protein problems; 8. Tanglegrams; 9. TSP in genomics; 10. Molecular sequence analysis; 11. Metabolic networks and engineering; 12. ILP idioms; Part II: 13. Communities and cuts; 14. Corrupted data and extensions in phylogenetics; 15. More tanglegrams and trees; 16. Return to Steiner-trees; 17. Exploiting protein networks; 18. More strings and sequences; 19. Max-likelihood pedigrees; 20. Haplotyping; 21. Extended exercises; 22. What's next?; Epilogue: opinionated comments.