Let $A$ and $B$ be $C^*$-algebras which are equipped with continuous actions of a second countable, locally compact group $G$. We define a notion of equivariant asymptotic morphism, and use it to define equivariant $E$-theory groups $E_G(A,B)$ which generalize the $E$-theory groups of Connes and Higson. We develop the basic properties of equivariant $E$-theory, including a composition product and six-term exact sequences in both variables, and apply our theory to the problem of calculating $K$-theory for group $C^*$-algebras. Our main theorem gives a simple criterion for the assembly map of Baum and Connes to be an isomorphism. The result plays an important role in recent work of Higson and Kasparov on the Baum-Connes conjecture for groups which act isometrically and metrically properly on Hilbert space.
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Gewicht
ISBN-13
978-0-8218-2116-9 (9780821821169)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Introduction Asymptotic morphisms The homotopy category of asymptotic morphisms Functors on the homotopy category Tensor products and descent $C^\ast$-algebra extensions $E$-theory Cohomological properties Proper algebras Stabilization Assembly The Green-Julg theorem Induction and compression A generalized Green-Julg theorem Application to the Baum-Connes conjecture Concluding remarks on assembly for proper algebras References.