1. Introduction.- 1.1 Historical Remarks on Electron Tunneling.- 1.2 STM and Related Techniques.- 1.2.1 Local Proximal Probes.- 1.2.2 Modes of Operation.- 1.3 Development of the Field.- 1.4 Prospects for the Future.- References.- 2. The Rise of Local Probe Methods.- 3. STM on Metals.- 3.1 Tunneling Tip.- 3.2 Tunneling Spectroscopies.- 3.2.1 Current Versus Gap Distance.- 3.2.2 Electronic Structure by dl/dV.- 3.3 Examples on Metal Surfaces.- 3.3.1 Surface Structures.- 3.3.2 Dynamics.- 3.4 Conclusion.- References.- 4. Adsorbate Covered Metal Surfaces and Reactions on Metal Surfaces.- 4.1 Imaging of Adsorbates by STM.- 4.1.1 Representation of Individual Adsorbates.- 4.1.2 Resolution and Corrugation in Closed Adlayers.- 4.1.3 Spectroscopy of Adsorbates.- 4.2 Processes at the Metal-Gas Interface.- 4.2.1 Adsorption, Dissociation, Surface Diffusion.- 4.2.2 Formation of Ordered Adsorbate Layers.- 4.3 Structure Modifications of Metal Surfaces.- 4.3.1 Adsorbate-Induced Reconstructive Transformations.- 4.3.2 Oxidation Reactions.- 4.4 Epitaxial Growth of Metals on Metal Substrates.- 4.5 Conclusions.- References.- 5. STM on Semiconductors.- 5.1 Experimental Technique.- 5.1.1 Topographic Imaging.- 5.1.2 Tunneling Spectroscopy.- 5.2 Scanning Tunneling Microscopy/Spectroscopy on Surfaces.- 5.2.1 Clean Group IV Semiconductors.- 5.2.2 Clean Compound Semiconductor Surfaces.- 5.2.3 Adsorbates and Overlayers on Semiconductors.- 5.2.4 Chemical Reactions on Semiconductor Surfaces.- 5.3 Other Tunneling Techniques Applied to Semiconductors.- 5.3.1 Surface Photovoltage.- 5.3.2 Tunnehng-Induced Luminescence.- 5.3.3 Potentiometry.- 5.3.4 Ballistic Electron Emission Microscopy (BEEM).- References.- 6. STM on Layered Materials.- 6.1 STM Studies of Graphite.- 6.1.1 Site Asymmetry, Energy-Dependent Corrugation, Tunneling Spectroscopy and Electronic Structure of the Graphite Surface.- 6.1.2 Giant Corrugations, Tip-Sample Interaction and Elastic Response of the Graphite Surface.- 6.1.3 Anomalous STM Images.- 6.1.4 STM Imaging of Defects.- 6.1.5 STM Studies of Clusters on the Graphite Surface.- 6.2 STM Studies of Graphite Intercalation Compounds.- 6.2.1 Donor Graphite Intercalation Compounds.- 6.2.2 Acceptor Graphite Intercalation Compounds.- 6.2.3 Interpretation and Comparison with Theoretical Predictions.- 6.3 STM Studies of Transition Metal Dichalcogenides.- 6.4 STM Studies of Charge Density Waves.- 6.4.1 Charge Density Waves in Transition Metal Dichalcogenides.- 6.4.2 Charge Density Wave Defects and Domains.- 6.4.3 Charge Density Waves in Quasi-One-Dimensional Systems.- 6.5 STM Studies of High-Tc Superconductors.- 6.6 Concluding Comments.- References.- 7. Molecular Imaging by STM.- 7.1 Introduction to STM of Molecules.- 7.2 STM of Chemisorbed Molecules in Ultrahigh Vacuum.- 7.2.1 Coadsorbed Benzene and CO on Rh(111).- 7.2.2 Copper-Phthalocyanine on Cu(100) and GaAs (110).- 7.2.3 Naphthalene on Pt(111).- 7.3 STM of Alkanes and Their Derivatives.- 7.3.1 Cadmium Arachidate and Other Langmuir-Blodgett Films.- 7.3.2 n-Alkanes on Graphite.- 7.3.3 Alkylbenzenes on Graphite.- 7.4 STM of Liquid Crystals.- 7.4.1 Alkylcyanobiphenyls.- 7.4.2 Other Liquid Crystals.- 7.5 STM of Polymers.- 7.5.1 PODA, PMMA, and PMPS on Graphite.- 7.5.2 Polyethylene on Graphite.- 7.6 Other Molecules.- 7.7 Conclusions.- References.- 8. STM on Superconductors.- 8.1 Theory of TunneUng into Superconductors.- 8.1.1 Coulomb Blockade.- 8.2 Low Temperature STM Spectroscopy on Classical Superconductors.- 8.3 Vortices.- 8.4 Organic Superconductors.- 8.5 STM Topography on High-Tc Superconductors.- 8.5.1 Granularity and Growth Structures.- 8.5.2 Potentiometry.- 8.5.3 Incommensurate Modulation.- 8.6 STM Spectroscopy on High-Tc Superconductors.- 8.6.1 Normal State Spectroscopy.- 8.6.2 STM Spectroscopy of the Superconducting State.- 8.6.3 Energy Gap.- 8.7 Concluding Remarks.- References.