Algebraic graph theory is a combination of two strands. The first is the study of algebraic objects associated with graphs. The second is the use of tools from algebra to derive properties of graphs. The authors's goal has been to present and illustrate the main tools and ideas of algebraic graph theory, with an emphasis on current rather then classical topics. While placing a strong emphasis on concrete examples they tried to keep the treatment self-contained.
Rezensionen / Stimmen
C. Godsil and G.F. Royle
Algebraic Graph Theory
"A welcome addition to the literature . . . beautifully written and wide-ranging in its coverage."-MATHEMATICAL REVIEWS
"An accessible introduction to the research literature and to important open questions in modern algebraic graph theory"-L'ENSEIGNEMENT MATHEMATIQUE
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Graduate
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 25 mm
Gewicht
ISBN-13
978-0-387-95220-8 (9780387952208)
DOI
10.1007/978-1-4613-0163-9
Schweitzer Klassifikation
Graphs.- Groups.- Transitive Graphs.- Arc-Transitive Graphs.- Generalized Polygons and Moore Graphs.- Homomorphisms.- Kneser Graphs.- Matrix Theory.- Interlacing.- Strongly Regular Graphs.- Two-Graphs.- Line Graphs and Eigenvalues.- The Laplacian of a Graph.- Cuts and Flows.- The Rank Polynomial.- Knots.- Knots and Eulerian Cycles.- Glossary of Symbols.- Index.