Ce vol. III expose la théorie classique de Cauchy dans un esprit orienté bien davantage vers ses innombrables utilisations que vers une théorie plus ou moins complète des fonctions analytiques. On montre ensuite comment les intégrales curvilignes à la Cauchy se généralisent à un nombre quelconque de variables réelles (formes différentielles, formules de type Stokes). Les bases de la théorie des variétés sont ensuite exposées, principalement pour fournir au lecteur le langage "canonique" et quelques théorèmes importants (changement de variables dans les intégrales, équations différentielles). Un dernier chapitre montre comment on peut utiliser ces théories pour construire la surface de Riemann compacte d'une fonction algébrique, sujet rarement traité dans la littérature non spécialisée bien que n'éxigeant que des techniques élémentaires. Un volume IV exposera, outre,l'intégrale de Lebesgue, un bloc de mathématiques spécialisées vers lequel convergera tout le contenu des volumes précédents: séries et produits infinis de Jacobi, Riemann, Dedekind, fonctions elliptiques, théorie classique des fonctions modulaires et la version moderne utilisant la structure de groupe de Lie de SL(2,R).
Rezensionen / Stimmen
From the reviews:
"This is the third volume of the author's extensive treatise on analysis. . The book is well written and mathematically complete, with many explanations of the basic mathematical ideas in non-technical language combined with the precise mathematical formulations. The book should be quite readable for the reader (with a basic knowledge of French) who wants to learn part or all of the material on his/her own." (P. Lappan, Mathematical Reviews, Issue 2006 i)
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
27
27 s/w Abbildungen
IX, 338 p. 27 ill.
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 20 mm
Gewicht
ISBN-13
978-3-540-66142-9 (9783540661429)
Schweitzer Klassifikation
VIII. La théorie de Cauchy.- IX. Différentielles et intégrales.- X. La Surface de Riemann d'une fonction algébrique.