A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Illustrationen
24
24 s/w Tabellen
90 figures
Gewicht
ISBN-13
978-0-387-94783-9 (9780387947839)
DOI
10.1007/978-1-4684-0491-3
Schweitzer Klassifikation
1 Introduction.- 1.1 Compact Stars.- 1.2 Compact Stars and Relativistic Physics.- 1.3 Compact Stars and Dense-Matter Physics.- 2 General Relativity.- 2.1 Lorentz Invariance.- 2.1.1 Lorentz transformations.- 2.1.2 Covariant vectors.- 2.1.3 Energy-momentum tensor of a perfect fluid.- 2.1.4 Light cone.- 2.2 Scalars, Vectors, and Tensors in Curvilinear Coordinates.- 2.3 Principle of Equivalence of Inertia and Gravitation.- 2.3.1 Photon in a gravitational field.- 2.3.2 Tidal gravity.- 2.3.3 Curvature of spacetime.- 2.3.4 Energy conservation and curvature.- 2.4 Gravity.- 2.4.1 Mathematical definition of local Lorentz frames.- 2.4.2 Geodesics.- 2.4.3 Comparison with Newton's gravity.- 2.5 Covariance.- 2.5.1 Principle of General Covariance.- 2.5.2 Covariant Differentiation.- 2.5.3 Geodesic equation from covariance principle.- 2.5.4 Covariant divergence and conserved quantities.- 2.6 Riemann Curvature Tensor.- 2.6.1 Second covariant derivative of scalars and vectors.- 2.6.2 Symmetries of the Riemann tensor.- 2.6.3 Test for flatness.- 2.6.4 Second covariant derivative of tensors.- 2.6.5 Bianchi identities.- 2.6.6 Einstein tensor.- 2.7 Einstein's Field Equations.- 2.8 Relativistic Stars.- 2.8.1 Metric in static isotropic spacetime.- 2.8.2 The Schwarzschild solution.- 2.8.3 Riemann tensor outside a Schwarzschild star.- 2.8.4 Energy-Momentum tensor of matter.- 2.8.5 The Oppenheimer-Volkoff equations.- 2.8.6 Gravitational collapse and limiting mass.- 2.9 Action Principle in Gravity.- 3 Compact Stars: From Dwarfs to Black Holes.- 3.1 Birth and Death of Stars.- 3.2 Objective.- 3.3 Gravitational Units and Neutron Star Size.- 3.4 Partial Decoupling of Matter from Gravity.- 3.5 Equations of Relativistic Stellar Structure.- 3.6 Electrical Neutrality of Stars.- 3.7 "Constancy" of the Chemical Potential.- 3.8 Gravitational Redshift.- 3.8.1 Integrity of an atom in strong fields.- 3.8.2 Redshift in a general static field.- 3.8.3 Comparison of emitted and received light.- 3.8.4 Measurements of M/R from redshift.- 3.9 White Dwarfs and Neutron Stars.- 3.9.1 Overview.- 3.9.2 Fermi-Gas equation of state for nucleons and electrons.- 3.9.3 High- and low-density limits.- 3.9.4 Polytropes and Newtonian white dwarfs.- 3.9.5 Stability.- 3.9.6 Nonrelativistic electron region.- 3.9.7 Relativistic electron region: asymptotic white dwarf mass.- 3.9.8 Nature of limiting mass of dwarfs and neutron stars.- 3.9.9 Degenerate ideal gas neutron star.- 3.10 Improvements in White Dwarf Models.- 3.10.1 Nature of matter at dwarf densities.- 3.10.2 Carbon and oxygen white dwarfs.- 3.11 Stellar Sequences from White Dwarfs to Neutron Stars.- 3.12 Star of Uniform Density.- 3.13 Baryon Number of a Star.- 3.14 Bound on Maximum Mass of Neutron Stars.- 3.15 Beyond Maximum-Mass Neutron Stars.- 3.16 Black Holes.- 3.16.1 Interior and Exterior Regions.- 3.16.2 No statics within.- 3.16.3 Black hole densities.- 4 Relativistic Nuclear Field Theory.- 4.1 Motivation.- 4.2 Lagrange Formalism.- 4.3 Symmetries and Conservation Laws.- 4.3.1 Internal global symmetries.- 4.3.2 Spacetime symmetries.- 4.4 Boson and Fermion Fields.- 4.4.1 Uncharged and charged scalar fields.- 4.4.2 Uncharged and charged vector fields.- 4.4.3 Dirac fields.- 4.4.4 Neutron and proton.- 4.4.5 Electromagnetic field.- 4.5 Properties of Nuclear Matter.- 4.6 The ? - ? Model.- 4.7 Stationarity of Energy Density.- 4.8 Model with Scalar Self-Interactions.- 4.8.1 Algebraic determination of the coupling constants.- 4.8.2 Symmetric nuclear matter equation of state.- 4.8.3 Negative self-interaction.- 4.9 Introduction of Isospin Force.- 4.10 Inclusion of the Octet of Baryons.- 4.11 High-Density Limit.- 4.12 Effective vs. Renormalized Theory.- 4.13 Bound vs. Unbound Neutron Matter.- 4.13.1 Bound neutron matter.- 4.13.2 First-Order phase transition.- 4.14 Note on Dimensions.- 4.15 Summary.- 5 Neutron Stars.- 5.1 Introduction.- 5.2 Pulsars: The Observational Basis of Neutron Stars.- 5.2.1 Important pulsar discoveries.- 5.2.2 Pulsar periods.- 5.2.3 Individual pulses and pulse profiles.- 5.2.4 Detection biases.- 5.2.5 Two populations of pulsars.- 5.2.6 Supernova associations with pulsars.- 5.2.7 Why pulsars are neutron stars.- 5.2.8 Pulsar masses.- 5.2.9 Pulsar ages.- 5.2.10 Evolution of the braking index5.- 5.3 Theory of Neutron Stars.- 5.3.1 Nuclear and neutron star matter: Similarities and differences.- 5.3.2 Chemical equilibrium in a star.- 5.3.3 Hadronic composition of neutron stars.- 5.3.4 Neutron star matter.- 5.3.5 Hints for computation.- 5.3.6 Isospin- and charge-favored baryon species.- 5.3.7 Surface of neutron stars.- 5.3.8 Reprise of white dwarfs to neutron stars.- 5.3.9 Development of neutron star sequences.- 5.3.10 Mass as a function of central density.- 5.3.11 Radius-Mass characteristic relationship.- 5.4 Constitution of Neutron Stars.- 5.4.1 Limiting mass and the equation of state.- 5.4.2 Beta equilibrium and symmetry energy.- 5.4.3 Hyperon stars.- 5.4.4 Limiting mass and hyperon populations.- 5.4.5 Compression modulus and effective nucleon mass.- 5.4.6 Pion and kaon condensation.- 5.4.7 Charge neutrality achieved among baryons.- 5.5 Tables of Equations of State.- 5.5.1 Low density.- 5.5.2 High density.- 6 Rotating Neutron Stars.- 6.1 Motivation.- 6.2 Dragging of Local Inertial Frames.- 6.3 Interior Solution for the Dragging Frequency.- 6.4 Kepler Angular Velocity in General Relativity.- 6.5 Effect of Frame Dragging on Kepler Frequency.- 6.6 Hartle-Thorne Perturbative Solution.- 6.6.1 Comparison of Perturbative and Numerical Solutions.- 6.7 Imprint of Angular Momentum.- 6.8 Rotating Stars with Realistic Equations of State.- 6.9 Effect of Rotation on Stellar Structure.- 6.10 Gravitational-Wave Instabilities.- 7 Limiting Rotational Period of Neutron Stars.- 7.1 Motivation.- 7.2 The Minimal Constraints.- 7.3 Variational Ansatz.- 7.4 Limiting Value of Rotational Period as a Function of Mass.- 7.5 Test of Sensitivity of Results.- 7.6 General Relativistic Limit on Rotation.- 7.7 Discussion and Alternatives.- 7.8 Summary.- 8 Quark Stars.- 8.1 Introduction.- 8.2 Quark Matter Equation of State.- 8.2.1 Zero Temperature.- 8.2.2 Massless quark approximation.- 8.2.3 First order in ?s.- 8.3 Quark Star Matter.- 8.4 Strange and Charm Stars.- 8.5 Beyond White Dwarfs and Neutron Stars.- 9 Hybrid Stars.- 9.1 Introduction.- 9.2 Constant-Pressure Phase Transition.- 9.3 The Confined-Deconfined Phase Transition in Neutron Stars.- 9.3.1 Conservation laws are global-not local.- 9.4 Degrees of Freedom in a Multicomponent System.- 9.4.1 Coulomb lattice structure of the mixed phase.- 9.4.2 Phase diagram.- 9.4.3 Two energy scales.- 9.5 Gross Structure of a Hybrid Star.- 9.5.1 Energy budget in the reapportionment of charge.- 9.6 Crystalline Structure.- 9.6.1 Crystalline structure as a function of stellar mass.- 9.6.2 Possible implications for glitches.- 9.7 Mechanism for Formation of Low-Mass Black Holes.- 9.7.1 Hyperonization-Induced collapse.- 9.7.2 Deconfinement-Induced collapse.- 9.7.3 Density profiles.- 9.7.4 Discussion.- 9.8 Tables of Equation of State for Hybrid Stars.- 10 Strange Stars.- 10.1 The Strange Matter Hypothesis.- 10.2 Compatibility of the Hypothesis with Present Knowledge.- 10.2.1 Energetic considerations.- 10.2.2 The universe and its evolution.- 10.2.3 Stability of nuclei against decay to strange matter.- 10.2.4 Stability of nuclei to conversion by strange nuggets.- 10.2.5 Terrestrial searches.- 10.2.6 Summary, prospects and challenges.- 10.3 Submillisecond Pulsars.- 10.3.1 The fine-tuning problem.- 10.3.2 Limits to neutron star rotation.- 10.3.3 Implausibly high central densities.- 10.3.4 Strange stars as fast rotors.- 10.3.5 Out of the impasse.- 10.3.6 Motivation for searches and prospects for discovery.- 10.4 Structure of Strange Stars.- 10.5 Strange Stars to Strange Dwarfs.- 10.5.1 Strange stars with nuclear crusts.- 10.5.2 Strange dwarfs with nuclear crusts.- 10.5.3 Stability.- 10.5.4 Possible new class of dense white dwarfs.- 10.6 Conclusion.- Appendix A: Useful Astronomical Data.- Books for Further Study.- References.