Notational remarks.- Basic definitions.- Full bundles and bundles with completely regular base space.- Bundles with locally paracompact base spaces.- Stone ¿ Weierstra¿theorems for bundles.- An alternative description of spaces of sections: Function modules.- Some algebraic aspects of ?-spaces.- A third description of spaces of sections: C(X)-convex modules.- C(X)-submodules of ?(p).- Quotients of bundles and C(X)-modules.- Morphisms between bundles.- Bundles of operators.- Excursion: Continuous lattices and bundles.- M-structure and bundles.- An adequate M-theory for ?-spaces.- Duality.- The closure of the "unit ball" of a bundle and separation axioms.- Locally trivial bundles: A definition.- Local linear independence.- The space Mod(?(p),C(X)).- Internal duality of C(X)-modules.- The dual space ?(p)' of a space of sections.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 17 mm
Gewicht
ISBN-13
978-3-540-11610-3 (9783540116103)
DOI
Schweitzer Klassifikation
Notational remarks.- Basic definitions.- Full bundles and bundles with completely regular base space.- Bundles with locally paracompact base spaces.- Stone - Weierstraß theorems for bundles.- An alternative description of spaces of sections: Function modules.- Some algebraic aspects of ?-spaces.- A third description of spaces of sections: C(X)-convex modules.- C(X)-submodules of ?(p).- Quotients of bundles and C(X)-modules.- Morphisms between bundles.- Bundles of operators.- Excursion: Continuous lattices and bundles.- M-structure and bundles.- An adequate M-theory for ?-spaces.- Duality.- The closure of the "unit ball" of a bundle and separation axioms.- Locally trivial bundles: A definition.- Local linear independence.- The space Mod(?(p),C(X)).- Internal duality of C(X)-modules.- The dual space ?(p)' of a space of sections.