Dieses Buch bietet eine umfassende und aktuelle Darstellung des Themenbereichs "Numerische Lösung unrestringierter Optimierungsaufgaben mit differenzierbarer Zielfunktion", die über die bislang existierende Lehrbuchliteratur deutlich hinausgeht. Es wendet sich in erster Linie an Studierende der Mathematik, der Wirtschaftsmathematik und der Technomathematik in mittleren und höheren Semestern, sollte aber auch erfahrenen Mathematikern einen Zugang zur aktuellen Forschung und Anwendern einen Überblick über die vorhandenen Verfahren geben. Alle besprochenen Verfahren sind ausführlich motiviert und mit einer vollständigen Konvergenzanalyse versehen, und es werden zu allen konkreten Algorithmen Tabellen mit numerischen Resultaten angegeben. In Anhängen sind die benötigten Grundlagen aus der mehrdimensionalen Analysis und der linearen Algebra sowie Testbeispiele zusammengestellt. Abgerundet wird das Buch durch ca. 150 Aufgaben unterschiedlichen Umfangs und Schwierigkeitsgrades.
Rezensionen / Stimmen
From the reviews:
"The book derives from different lectures given by the authors at the University of Hamburg. The authors consider only numerical methods for unconstrained optimization problems and assume the function to be minimized is continously differentiable. The book is clearly written and contains many examples. [..]" (H. Benker (Merseburg) - Zentralblatt MATH Database 0934.65062)
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Upper undergraduate
Illustrationen
3
3 s/w Abbildungen
XII, 350 S. 3 Abb.
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 21 mm
Gewicht
ISBN-13
978-3-540-66220-4 (9783540662204)
DOI
10.1007/978-3-642-58582-1
Schweitzer Klassifikation
1. Einführung.- 2. Optimalitätskriterien.- Aufgaben.- 3. Konvexe Funktionen.- Aufgaben.- 4. Ein allgemeines Abstiegsverfahren.- Aufgaben.- 5. Schrittweitenstrategien.- 5.1 Armijo-Regel.- 5.2 Wolfe-Powell-Schrittweitenstrategie.- 5.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 6. Schrittweitenalgorithmen.- 6.1 Armijo-Regel.- 6.2 Wolfe-Powell-Schrittweitenstrategie.- 6.3 Strenge Wolfe-Powell-Schrittweitenstrategie.- Aufgaben.- 7. Konvergenzraten und Charakterisierungen.- Aufgaben.- 8. Gradientenverfahren.- 8.1 Das Gradientenverfahren.- 8.2 Konvergenz bei quadratischer Zielfunktion.- 8.3 Gradientenähnliche Verfahren.- Aufgaben.- 9. Newton-Verfahren.- 9.1 Das lokale Newton-Verfahren.- 9.2 Ein globalisiertes Newton-Verfahren.- 9.3 Hinweise zur Implementation.- 9.4 Numerische Resultate.- Aufgaben.- 10. Inexakte Newton-Verfahren.- 10.1 Das lokale inexakte Newton-Verfahren.- 10.2 Ein globalisiertes inexaktes Newton-Verfahren.- 10.3 Hinweise zur Implementation.- 10.4 Numerische Resultate.- Aufgaben.- 11. Quasi-Newton-Verfahren.- 11.1 Herleitung einiger Quasi-Newton-Formeln.- 11.2 Lokale Konvergenz des PSB-Verfahrens.- 11.3 Lokale Konvergenz des BFGS-Verfahrens.- 11.4 Globalisierte Quasi-Newton-Verfahren.- 11.5 Konvergenz bei gleichmäßig konvexen Funktionen.- 11.6 Weitere Quasi-Newton-Formeln.- 11.7 Hinweise zur Implementation.- 11.8 Numerische Resultate.- Aufgaben.- 12. Limited Memory Quasi-Newton-Verfahren.- 12.1 Herleitung des Limited Memory BFGS-Verfahrens.- 12.2 Konvergenz bei gleichmäßig konvexen Funktionen.- 12.3 Hinweise zur Implementation.- 12.4 Numerische Resultate.- Aufgaben.- 13. CG-Verfahren.- 13.1 Das CG-Verfahren für lineare Gleichungssysteme.- 13.2 Das Fletcher-Reeves-Verfahren.- 13.3 Das Polak-Ribière-Verfahren.- 13.4 Ein modifiziertesPolak-Ribière-Verfahren.- 13.5 Weitere CG-Verfahren.- 13.6 Numerische Resultate.- Aufgaben.- 14. Trust-Region-Verfahren.- 14.1 Das Trust-Region-Teilproblem.- 14.2 Die KKT-Bedingungen.- 14.3 Eine exakte Penalty-Funktion.- 14.4 Zur Lösung des Trust-Region-Teilproblems.- 14.5 Trust-Region-Newton-Verfahren.- 14.6 Teilraum-Trust-Region-Newton-Verfahren.- 14.7 Inexakte Trust-Region-Newton-Verfahren.- 14.8 Trust-Region-Quasi-Newton-Verfahren.- 14.9 Numerische Resultate.- Aufgaben.- A. Grundlagen aus der mehrdimensionalen Analysis.- B. Grundlagen aus der linearen Algebra.- C. Testbeispiele.