Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifolds, are much more abundant but have a more modest history, having become of increasing interest only over the past 40 years or so. The first book on this topic, this book ranges from criteria for metrisability, dynamics on non-metrisable manifolds, Nyikos's Bagpipe Theorem and whether perfectly normal manifolds are metrisable to structures on manifolds, especially the abundance of exotic differential structures and the dearth of foliations on the long plane. A rigid foliation of the Euclidean plane is described. This book is intended for graduate students and mathematicians who are curious about manifolds beyond the metrisability wall, and especially the use of Set Theory as a tool.
Rezensionen / Stimmen
"First of its kind, this volume by Gauld (Univ. of Auckland, New Zealand) both synthesizes and improves upon the journal literature, demonstrating clearly that non-metrizable manifolds admit profitable study from a variety of vantages (e.g., set theory, differential topology) and exhibit rich and surprising behaviors, using theory built on, but hardly reducible to, the metrizable case. ... Summing Up: Highly recommended. Upper-division undergraduates through professionals/practitioners." (D. V. Feldman, Choice, Vol. 53 (2), October, 2015)
Produkt-Info
Sprache
Verlagsort
Zielgruppe
Illustrationen
45 s/w Abbildungen, 6 farbige Abbildungen
45 schwarz-weiße und 6 farbige Abbildungen, Bibliographie
Maße
Höhe: 241 mm
Breite: 162 mm
Dicke: 17 mm
Gewicht
ISBN-13
978-981-287-256-2 (9789812872562)
DOI
10.1007/978-981-287-257-9
Schweitzer Klassifikation
Topological Manifolds.- Edge of the World: When are Manifolds Metrisable?.- Geometric Tools.- Type I Manifolds and the Bagpipe Theorem.- Homeomorphisms and Dynamics on Non-Metrisable Manifolds.- Are Perfectly Normal Manifolds Metrisable?.- Smooth Manifolds.- Foliations on Non-Metrisable Manifolds.- Non-Hausdorff Manifolds and Foliations.