"Well posed" boundary value problems.- Existence principle.- The function spaces and Hm.- The trace operator. Sobolev and Ehrling lemmas.- Elliptic linear systems. Interior regularity.- Existence of local solutions for elliptic systems.- Semiweak solutions of BVP for elliptic systems.- Regularity at the boundary: preliminary lemmas.- Regularity at the boundary: tangential derivatives.- Regularity at the boundary: final results.- The classical elliptic BVP of Mathematical physics: 2nd order linear PDE..- The classical elliptic BVP of Mathematical Physics: Linear Elastostatics.- The classical elliptic BVP of Mathematical Physics: Equilibrium of thin plates.- Strongly elliptic operators. G'rding inequality. Eigenvalue problems.- Eigenvalue problems. The Rayleigh-Ritz method.- The Weinstein-Aronszajn method.- Construction of the intermediate operators.- Orthogonal invariants of positive compact operators.- Upper approximation of the eigenvalues of a PCO. Representation of orthogonal invariants.- Explicit construction of the Green's matrix for an elliptic system.- Erratum.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 11 mm
Gewicht
ISBN-13
978-3-540-03351-6 (9783540033516)
DOI
Schweitzer Klassifikation
"Well posed" boundary value problems.- Existence principle.- The function spaces and Hm.- The trace operator. Sobolev and Ehrling lemmas.- Elliptic linear systems. Interior regularity.- Existence of local solutions for elliptic systems.- Semiweak solutions of BVP for elliptic systems.- Regularity at the boundary: preliminary lemmas.- Regularity at the boundary: tangential derivatives.- Regularity at the boundary: final results.- The classical elliptic BVP of Mathematical physics: 2nd order linear PDE..- The classical elliptic BVP of Mathematical Physics: Linear Elastostatics.- The classical elliptic BVP of Mathematical Physics: Equilibrium of thin plates.- Strongly elliptic operators. G»rding inequality. Eigenvalue problems.- Eigenvalue problems. The Rayleigh-Ritz method.- The Weinstein-Aronszajn method.- Construction of the intermediate operators.- Orthogonal invariants of positive compact operators.- Upper approximation of the eigenvalues of a PCO. Representation of orthogonal invariants.- Explicit construction of the Green's matrix for an elliptic system.- Erratum.