With applications in mind, this self-contained monograph provides a coherent and thorough treatment of the configuration spaces of Euclidean spaces and spheres, making the subject accessible to researchers and graduates with a minimal background in classical homotopy theory and algebraic topology.
Reihe
Auflage
Softcover reprint of the original 1st ed. 2001
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 19 mm
Gewicht
ISBN-13
978-3-642-63077-4 (9783642630774)
DOI
10.1007/978-3-642-56446-8
Schweitzer Klassifikation
I. The Homotopy Theory of Configuration Spaces.- I. Basic Fibrations.- II. Configuration Space of ?n+1, n < 1.- III. Configuration Spaces of Sn+1, n < 1.- IV. The Two Dimensional Case.- II. Homology and Cohomology of $$(\mathbb{F}_k (M)$$.- V. The Algebra $$H^* (\mathbb{F}_k (M);\mathbb{Z})$$.- VI. Cellular Models.- VII. Cellular Chain Models.- III. Homology and Cohomology of Loop Spaces.- VIII. The Algebra $$H_* (\Omega \mathbb{F}_k (M)))$$.- IX. RPT-Constructions.- X. Cellular Chain Algebra Models.- XI. The Serre Spectral Sequence.- XII. Computation of H*(?(M)).- XIII. ?-Category and Ends.- XIV. Problems of k-body Type.- References.