The 13 chapters of this book centre around the proof of
Theorem 1 of Faltings' paper "Diophantine approximation on
abelian varieties", Ann. Math.133 (1991) and together give
an approach to the proof that is accessible to Ph.D-level
students in number theory and algebraic geometry. Each
chapter is based on an instructional lecture given by its
author ata special conference for graduate students, on the
topic of Faltings' paper.
Reihe
Auflage
1st ed. 1993. 3nd printing 2003
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 9 mm
Gewicht
ISBN-13
978-3-540-57528-3 (9783540575283)
DOI
10.1007/978-3-540-48208-6
Schweitzer Klassifikation
Diophantine Equations and Approximation.- Diophantine Approximation and its Applications.- Roth's Theorem.- The Subspace Theorem of W.M. Schmidt.- Heights on Abelian Varieties.- D. Mumford's "A Remark on Mordell's Conjecture".- Ample Line Bundles and Intersection Theory.- The Product Theorem.- Geometric Part of Faltings's Proof.- Faltings's Version of Siegel's Lemma.- Arithmetic Part of Faltings's Proof.- Points of Degree d on Curves over Number Fields.- "The" General Case of S. Lang's Conjecture (after Faltings).