*FrontMatter, pg. i*Contents, pg. v*Preface, pg. ix*Acknowledgments, pg. x*Author information, pg. xi*Dependencies between the chapters, pg. xii*Chapter 1. Introduction, main results, context, pg. 1*Chapter 2. Modular curves, modular forms, lattices, Galois representations, pg. 29*Chapter 3. First description of the algorithms, pg. 69*Chapter 4. Short introduction to heights and Arakelov theory, pg. 79*Chapter 5. Computing complex zeros of polynomials and power series, pg. 95*Chapter 6. Computations with modular forms and Galois representations, pg. 129*Chapter 7. Polynomials for projective representations of level one forms, pg. 159*Chapter 8. Description of X1(5l), pg. 173*Chapter 9. Applying Arakelov theory, pg. 187*Chapter 10. An upper bound for Green functions on Riemann surfaces, pg. 203*Chapter 11. Bounds for Arakelov invariants of modular curves, pg. 217*Chapter 12. Approximating Vf over the complex numbers, pg. 257*Chapter 13. Computing Vf modulo p, pg. 337*Chapter 14. Computing the residual Galois representations, pg. 371*Chapter 15. Computing coefficients of modular forms, pg. 383*Epilogue, pg. 399*Bibliography, pg. 403*Index, pg. 423