This book contains three contributions in the field of dynamical systems. The topics treated are also related to topology, functional analysis, Hamiltonian systems and partial differential equations. All the authors give a careful and readable presentation of recent research results, which are of interest to mathematicians, mathematical biologists, chemists and physicists. The book is written for graduate students and researchers in these fields and it is also suitable as a text for graduate level seminars in dynamical systems.
Reihe
Auflage
Softcover reprint of the original 1st ed. 1994
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 10 mm
Gewicht
ISBN-13
978-3-642-78236-7 (9783642782367)
DOI
10.1007/978-3-642-78234-3
Schweitzer Klassifikation
Limit Relative Category and Critical Point Theory.- 1. Introduction.- 2. Relative Category.- 3. Relative Cuplength.- 4. Limit Relative Category.- 5. The Deformation Lemma.- 6. Critical Point Theorems.- 7. Some Applications.- 8. A Perturbation Theorem.- References.- Coexistence of Infinitely Many Stable Solutions to Reaction Diffusion Systems in the Singular Limit.- 1. Introduction and singular limit slow dynamics.- 2. Intuitive Approach to the Stability of Multi-layered Solutions.- 3. The SLEP Method for the Stability of Normal N-layered Solutions.- 4. Recovery Process of Stability.- 5. Concluding Remarks.- Appendix A.- Appendix B.- Appendix C.- References.- Recent advances in regularity of second-order hyperbolic mixed problems, and applications.- 1. Introduction.- I: Regularity Theory.- 2. Regularity under Dirichlet boundary conditions.- 3. Regularity under Neumann Boundary Conditions.- 4. Cosine/Sine (Semigroup) Representation Formulae of the Solutions.- II: Applications.- 5. Well-posedness of Semi-linear Wave Equations with Neumann Boundary Conditions.- 6. Local Exponential Stability of Damped Wave Equations with Semi-linear Boundary Conditions.- 7. Exact Controllability of Semi-linear Hyperbolic Problems.- 8. Riccati Operator Equations and Hyperbolic Mixed Problems.- References.