LANTHANIDE AND ACTINIDE CHEMISTRY
Lanthanides and actinides, also known as "f elements," are a group of metals which share certain important properties and aspects of electronic structure. They have a huge range of applications in the production of electronic devices, magnets, superconductors, fuel cells, sensors, and more. The cursory treatment of these important metals in most inorganic chemistry textbooks makes a book-length treatment essential.
Since 2006, Lanthanide and Actinide Chemistry has met this need with a thorough, accessible overview. With in-depth accounts of the lanthanides, actinides, and transactinides, this book is ideal for both undergraduate and postgraduate students in inorganic chemistry or chemical engineering courses. Now updated to reflect groundbreaking recent research, this promises to continue as the essential introductory volume on the subject.
Readers of the second edition of Lanthanide and Actinide Chemistry will also find:
New and expanded subject areas including lanthanide enzymes, single-molecule magnets, luminescence and upconversion, organometallic and coordination chemistry; and many more.
Up-to-date information on the myriad modern applications of f-elements
Lists of objectives and learning goals at the start of each chapter
Lanthanide and Actinide Chemistry is ideal for advanced undergraduates and graduate students in f-element chemistry, inorganic chemistry, or any related field.
INORGANIC CHEMISTRY ADVANCED TEXTBOOK
This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas, such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Maße
Höhe: 263 mm
Breite: 186 mm
Dicke: 25 mm
Gewicht
ISBN-13
978-1-118-87349-6 (9781118873496)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
SIMON COTTON, PHD, is a retired Honorary Senior Lecturer in Chemistry at the University of Birmingham, UK. He has decades of teaching and publishing experience in inorganic chemistry and related fields, and first worked with uranium and the lanthanides over fifty years ago; his 'Soundbite Molecules' column regularly appeared In the magazine Education in Chemistry for fifteen years, whilst he has written over 100 'Molecules of the Month' at https://www.chm.bris.ac.uk/motm/motm.htm
Autor*in
University of Birmingham, UK
About the Author .
Preface xv
Preface to Second Edition .
About the Companion Website
1 Introduction to the Lanthanides 1
1.1 Introduction 1
1.2 Characteristics of the Lanthanides 2
1.3 The Occurrence and Abundance of the Lanthanides 2
1.4 Lanthanide Ores 3
1.5 Extracting and Separating the Lanthanides 3
1.5.1 Extraction 3
1.5.2 Separating the Lanthanides 4
1.6 The Position of the Lanthanides in the Periodic Table 6
1.7 The Lanthanide Contraction 7
1.8 Recycling Lanthanides xx
1.9 Isotopes .................. xx
2 The Lanthanides - Principles and Energetics 9
2.1 Electron Configurations of the Lanthanides and f Orbitals 9
2.2 What do f Orbitals Look Like? 10
2.3 How f Orbitals affect Properties of the Lanthanides 10
2.4 The Lanthanide Contraction 11
2.5 Electron Configurations of the Lanthanide Elements and of Common Ions 12
2.6 Patterns in Ionization Energies 12
2.7 Atomic and Ionic Radii 14
2.8 Patterns in Hydration Energies (Enthalpies) for the Lanthanide Ions 14
2.9 Enthalpy Changes for the Formation of Simple Lanthanide Compounds 14
2.9.1 Stability of Tetrahalides 14
2.9.2 Stability of Dihalides 17
2.9.3 Stability of Aqua Ions 18
2.10 Patterns in Redox Potentials 19
3 The Lanthanide Elements and Simple Binary Compounds 23
3.1 Introduction 23
3.2 The Elements 23
3.2.1 Properties 23
3.2.2 Synthesis 24
3.2.3 Alloys and Uses of the Metals 25
3.3 Binary Compounds 25
3.3.1 Trihalides 25
3.3.2 Tetrahalides 27
3.3.3 Dihalides 28
3.3.4 Oxides 29
3.4 Borides 31
3.5 Carbides 31
3.6 Nitrides 31
3.7 Hydrides 31
3.8 Sulfides 32
4 Coordination Chemistry of the Lanthanides 35
4.1 Introduction 35
4.2 Stability of Complexes 35
4.3 Complexes 37
4.3.1 The Aqua Ions 37
4.3.2 Hydrated Salts 37
4.3.3 Other O-Donors 38
4.3.4 Complexes of ?-Diketonates 39
4.3.5 Lewis Base Adducts of ?-Diketonate Complexes 41
4.3.6 Nitrate and Carbonate Complexes xx
4.3.7 Crown Ether Complexes 41
4.3.8 Complexes of EDTA and Related Ligands 42
4.3.9 Complexes of N-Donors 43
4.3.10 Complexes of Porphyrins and Related Systems 44
4.3.11 Halide Complexes 46
4.3.12 Complexes of S-Donors 46
4.4 Alkoxides, Alkylamides and Related Substances 47
4.4.1 Alkylamides 47
4.4.2 Alkoxides 48
4.4.3 Thiolates 50
4.4.4 Borohydrides xx
4.5 Coordination Numbers in Lanthanide Complexes 50
4.5.1 General Principles 50
4.5.2 Examples of the Coordination Numbers 51
4.5.3 The Lanthanide Contraction and Coordination Numbers 53
4.5.4 Formulae and Coordination Numbers 54
4.6 The Coordination Chemistry of the +2 and +4 States 54
4.6.1 The (+2) State 55
4.6.2 The (+4) State 56
4.7 Lanthanides in Living Systems ... xx
5 Electronic and Magnetic Properties of the Lanthanides 61
5.1 Magnetic and Spectroscopic Properties of the Ln3+ Ions 61
5.2 Magnetic Properties of the Ln3+ Ions 62
5.2.1 Adiabatic Demagnetization 65
5.2.2 Single Molecule Magnets (SMMs) and Single Ion Magnets (SIMs) xx
5.3 Energy Level Diagrams for the Lanthanide Ions, and their Electronic Spectra 65
5.3.1 Electronic Spectra 66
5.3.2 Hypersensitive Transitions 68
5.4 Luminescence Spectra 69
5.4.1 Quenching 73
5.4.2 Antenna Effects 73
5.4.3 Lanthanides in Upconversion xx
5.4.4 Applications of Luminescence to Sensory Probes 74
5.4.5 Fluorescence and TV 75
5.4.6 Lighting Applications 76
5.4.7 Lasers 76
5.4.8 Euro Banknotes 77
5.5 NMR Applications 77
5.5.1 ?-Diketonates as NMR Shift Reagents 77
5.5.2 Magnetic Resonance Imaging (MRI) 78
5.5.3 What Makes a Good MRI Agent? 79
5.5.4 Health issues with MRI Agents xx
5.5.5 Texaphyrins 81
5.6 Electron Paramagnetic Resonance Spectroscopy 82
5.7 Lanthanides as Probes in Biological Systems 83
6 Organometallic Chemistry of the Lanthanides 89
6.1 Introduction 89
6.2 The +3 Oxidation State 89
6.2.1 Alkyls 89
6.2.2 Aryls 90
6.3 Cyclopentadienyls 91
6.3.1 Compounds of the Unsubstituted Cyclopentadienyl Ligand
(C5H5 = Cp; C5Me5 = Cp*) 91
6.3.2 Compounds [LnCp*3] (Cp* = Pentamethylcyclopentadienyl) 94
6.3.3 Bis(cyclopentadienyl) Alkyls and Aryls LnCp2R 95
6.3.4 Bis(pentamethylcyclopentadienyl) Alkyls 96
6.3.5 Hydride Complexes 98
6.4 Cyclooctatetraene Dianion Complexes 98
6.5 The +2 State 99
6.5.1 Alkyls and Aryls 99
6.5.2 Cyclopentadienyls 100
6.5.3 Other Compounds 100
6.6 The +4 State 101
6.7 Metal-Arene Complexes 101
6.8 Carbonyls 102
6.9 Compounds with Lanthanide-Metal bonds xx
7 The Misfits: Scandium, Yttrium, and Promethium 107
7.1 Introduction 107
7.2 Scandium 107
7.2.1 Binary Compounds of Scandium 108
7.3 Coordination Compounds of Scandium 108
7.3.1 The Aqua Ion and Hydrated Salts 108
7.3.2 Other Complexes 109
7.3.3 Alkoxides and Alkylamides 111
7.3.4 Patterns in Coordination Number 112
7.3.5 Scandium and Yttrium in the (+2) state xxx
7.4 Organometallic Compounds of Scandium 114
7.5 Yttrium 114
7.6 Promethium 115
8 Introduction to the Actinides 145
9.1 Introduction and Occurrence of the Actinides 145
9.2 Synthesis 145
9.3 Extraction of Th, Pa, and U 147
9.3.1 Extraction of Thorium 147
9.3.2 Extraction of Protactinium 148
9.3.3 Extraction and Purification of Uranium 148
9.3.3 Uranium Extraction from Seawater............... xxx
9.4 Uranium Isotope Separation 148
9.4.1 Gaseous Diffusion 148
9.4.2 Gas Centrifuge 148
9.4.3 Electromagnetic Separation 149
9.4.4 Laser Separation 149
9.5 Characteristics of the Actinides 149
9.6 Reduction Potentials of the Actinides 150
9.7 Relativistic Effects 152
9 Binary Compounds of the Actinides 155
9.1 Introduction 155
9.2 Halides 155
9.2.1 Syntheses of the Halides 156
9.2.2 Structure Types 158
9.3 Thorium Halides 159
9.4 Uranium Halides 160
9.4.1 Uranium(VI) Compounds 161
9.4.2 Uranium(V) Compounds 161
9.4.3 Uranium (IV) Compounds 161
9.4.4 Uranium(III) Compounds 163
9.4.5 Uranium Hexafluoride and Isotope Separation 163
9.5 The Actinide Halides (Ac-Am) excluding U and Th 165
9.5.1 Actinium 165
9.5.2 Protactinium 165
9.5.3 Neptunium 166
9.5.4 Plutonium 166
9.5.5 Americium 167
9.6 Halides of the Heavier Transactinides 168
9.6.1 Curium(III) Chloride 168
9.6.2 Californium(III) Chloride, Californium(III) Iodide, and Californium(II) Iodide 168
9.6.3 Einsteinium(III) Chloride 168
9.7 Oxides 169
9.7.1 Thorium Oxide 169
9.7.2 Uranium Oxides 169
9.7.3 Plutonium Oxides xxx
9.8 Sulfides ......... xxx
9.9 Uranium Hydride UH3 xxx
9.10 Oxyhalides xxx
10 Coordination Chemistry of the Actinides 173
10.1 Introduction 173
10.2 General Patterns in the Coordination Chemistry of the Actinides 173
10.3 Coordination Numbers in Actinide Complexes 174
10.4 Types of Complex Formed 174
10.5 Uranium and Thorium Chemistry 175
10.5.1 Uranyl Complexes 175
10.5.2 Coordination Numbers and Geometries in Uranyl Complexes 177
10.5.3 Some Other Complexes 178
10.5.4 Uranyl Nitrate and its Complexes; their Role in Processing Nuclear Waste 179
10.5.5 Nuclear Waste Processing 179
10.5.6 Uranium Oxo Complexes xxx
10.5.7 Uranium Nitrido Complexes xxx
10.5.8 Uranium (V) Complexes xxx
10.5.9 Uranium(III) Complexes xxx
10.5.10 Uranium(II) Complexes xxx
10.6 Complexes of the Actinide(IV) Nitrates and Halides 180
10.6.1 Thorium Nitrate Complexes 180
10.6.2 Uranium(IV) Nitrate Complexes 180
10.6.3 Complexes of the Actinide(IV) Halides 181
10.7 Thiocyanates 183
10.8 Amides, Alkoxides and Thiolates 184
10.8.1 Amide Chemistry 184
10.8.2 Alkoxides and Aryloxides 185
10.8.3 Borohydrides ............ xxx
10.8.4 Uranium Chelate Compounds xxx
10.9 Chemistry of Actinium 186
10.10 Chemistry of Protactinium 187
10.11 Chemistry of Neptunium 188
10.11.1 Complexes of Neptunium 188
10.12 Chemistry of Plutonium 189
10.12.1 Aqueous Chemistry 189
10.12.2 The Stability of the Oxidation States of Plutonium 190
10.12.3 Coordination Chemistry of Plutonium 191
10.12.4 Plutonium in the Environment 193
10.13 Chemistry of Americium and Subsequent Actinides 195
10.13.1 Potentials 195
10.14 Chemistry of the Later Actinides 196
11 Electronic and Magnetic Properties of the Actinides 201
11.1 Introduction 201
11.2 Absorption Spectra 202
11.2.1 Uranium(VI) - UO22+ - f0 202
11.2.2 Uranium(V) - f 1 203
11.2.3 Uranium(IV) - f 2 204
11.2.4 Spectra of the Later Actinides 206
11.3 Magnetic Properties 207
11.3.1 Uranium Single Molecule Magnets xxx
12 Organometallic Chemistry of the Actinides 209
12.1 Introduction 209
12.2 Simple ?-Bonded Organometallics 209
12.3 Cyclopentadienyls 211
12.3.1 Oxidation State (VI) 211
12.3.2 Oxidation State (V) 211
12.3.3 Oxidation State (IV) 211
12.3.4 Oxidation State (III) 214
12.4 Compounds of the Pentamethylcyclopentadienyl Ligand (C5Me5 = Cp*) 215
12.4.1 Oxidation State(IV) 215
12.4.2 Cationic Species and Catalysts 216
12.4.3 Hydrides 217
12.4.4 Oxidation State (III) 218
12.4.5 Oxidation State (II) xxx
12.4.6 Some Recent Chemistry of Neptunium and Plutonium xxx
12.5 Tris(pentamethylcyclopentadienyl) Systems 219
12.6 Other Metallacycles 219
12.7 Cyclooctatetraene Dianion Compounds 219
12.8 Arene Complexes 221
12.8.1 Simple Arene Derivatives xxx
12.8.2 Arene-supported Triazacylononane Derivatives .... xxx
12.9 Carbonyls 222
13 Synthesis of the Transactinides and their Chemistry 225
13.1 Introduction 225
13.2 Finding New Elements 226
13.3 Synthesis of the Transactinides 226
13.4 Naming the Transactinides 229
13.5 Predicting Electronic Arrangements 230
13.6 Identifying the Elements 230
13.7 Predicting Chemistry of the Transactinides 233
13.8 What is known about the Chemistry of the Transactinides 234
13.8.1 Element 104 234
13.8.2 Element 105 234
13.8.3 Element 106 234
13.8.4 Element 107 235
13.8.5 Element 108 235
13.8.6 Elements 112 and 114 xxx
13.9 And the Future? 236
Bibliography 237
Index 253