In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
- Mathematiker mit Forschungsgebiet Arithmetische Geometrie, Zahlentheorie, Algebraische Geometrie, Mathematische Physik
- Fortgeschrittene Studenten und Doktoranden der Mathematik in den genannten Gebieten.
- Institute und Bibliotheken
Illustrationen
24 black & white illustrations
Maße
Höhe: 24.4 cm
Breite: 17 cm
Gewicht
ISBN-13
978-3-8348-0170-8 (9783834801708)
DOI
10.1007/978-3-8348-0352-8
Schweitzer Klassifikation
Prof. Dr. Caterina Consani, Department of Mathematics, The Johns Hopkins University, Baltimore, USA
Prof. Dr. Matilde Marcolli, Max-Planck Institute for Mathematics, Bonn, Germany
Herausgeber*in
Reihen-Herausgeber
The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.