Lebesgue Integration presents a logical development of the basic concepts of Lebesgue's integration theorems, proceeding from the study of topological concepts on the real line. This text is intended for advanced undergraduates and beginning graduate students.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Editions-Typ
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 16 mm
Gewicht
ISBN-13
978-0-387-94357-2 (9780387943572)
DOI
10.1007/978-1-4612-0781-8
Schweitzer Klassifikation
Zero Preliminaries.- 1. Sets.- 2. Relations.- 3. Countable Sets.- 4. Real Numbers.- 5. Topological Concepts in ?.- 6. Continuous Functions.- 7. Metric Spaces.- I The Rieman Integral.- 1. The Cauchy Integral.- 2. Fourier Series and Dirichlet's Conditions.- 3. The Riemann Integral.- 4. Sets of Measure Zero.- 5. Existence of the Riemann Integral.- 6. Deficiencies of the Riemann Integral.- II The Lebesgue Integral: Riesz Method.- 1. Step Functions and Their Integrals.- 2. Two Fundamental Lemmas.- 3. The Class L+.- 4. The Lebesgue Integral.- 5. The Beppo Levi Theorem-Monotone Convergence Theorem.- 6. The Lebesgue Theorem-Dominated Convergence Theorem.- 7. The Space L1.- Henri Lebesgue.- Frigyes Riesz.- III Lebesgue Measure.- 1. Measurable Functions.- 2. Lebesgue Measure.- 3. ?-Algebras and Borel Sets.- 4. Nonmeasurable Sets.- 5. Structure of Measurable Sets.- 6. More About Measurable Functions.- 7. Egoroff's Theorem.- 8. Steinhaus' Theorem.- 9. The Cauchy Functional Equation.- 10. Lebesgue Outer and Inner Measures.- IV Generalizations.- 1. The Integral on Measurable Sets.- 2. The Integral on Infinite Intervals.- 3. Lebesgue Measure on ?.- 4. Finite Additive Measure: The Banach Measure Problem.- 5. The Double Lebesgue Integral and the Fubini Theorem.- 6. The Complex Integral.- V Differentiation and the Fundamental Theorem of Calculus.- 1. Nowhere Differentiable Functions.- 2. The Dini Derivatives.- 3. The Rising Sun Lemma and Differentiability of Monotone Functions.- 4. Functions of Bounded Variation.- 5. Absolute Continuity.- 6. The Fundamental Theorem of Calculus.- VI The LP Spaces and the Riesz-Fischer Theorem.- 1. The LP Spaces (1 ? p < ?).- 2. Approximations by Continuous Functions.- 3. The Space L?.- 4. The lp Spaces (1 ? p ? ?).- 5. HilbertSpaces.- 6. The Riesz-Fischer Theorem.- 7. Orthonormalization.- 8. Completeness of the Trigonometric System.- 9. Isoperimetric Problem.- 10. Remarks on Fourier Series.- Appendix The Development of the Notion of the Integral by Henri Lebesgue.- Notation.