A convergence for bivariate functions aimed at the convergence of saddle values.- Optimal feedback controls for semilinear parabolic equations.- On the production smoothing problem.- Existence of solutions and existence of optimal solutions.- Dual variational methods in non-convex optimization and differential equations.- ? ¿ Convergence and calculus of variations.- The approximate first-order and second-order directional derivatives for a convex function.- New applications of nonsmooth analysis to nonsmooth optimization.- Controle optimal de systemes a etats multiples.- A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the calculus of variations.- Remarks on pathwise nonlinear filtering.- Boundary solutions of differential inclusion.- On the compactness of minimizing sequences of variational problems.- A formula for the level sets of epi-limits and some applications.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 16 mm
Gewicht
ISBN-13
978-3-540-11999-9 (9783540119999)
DOI
Schweitzer Klassifikation
A convergence for bivariate functions aimed at the convergence of saddle values.- Optimal feedback controls for semilinear parabolic equations.- On the production smoothing problem.- Existence of solutions and existence of optimal solutions.- Dual variational methods in non-convex optimization and differential equations.- ? - Convergence and calculus of variations.- The approximate first-order and second-order directional derivatives for a convex function.- New applications of nonsmooth analysis to nonsmooth optimization.- Controle optimal de systemes a etats multiples.- A relation between existence of minima for non convex integrals and uniqueness for non strictly convex integrals of the calculus of variations.- Remarks on pathwise nonlinear filtering.- Boundary solutions of differential inclusion.- On the compactness of minimizing sequences of variational problems.- A formula for the level sets of epi-limits and some applications.