Augustin-Louis, Baron Cauchy (1789-1857) was the pre-eminent French mathematician of the nineteenth century. He began his career as a military engineer during the Napoleonic Wars, but even then was publishing significant mathematical papers, and was persuaded by Lagrange and Laplace to devote himself entirely to mathematics. His greatest contributions are considered to be the Cours d'analyse de l'Ecole Royale Polytechnique (1821), Resume des lecons sur le calcul infinitesimal (1823) and Lecons sur les applications du calcul infinitesimal a la geometrie (1826-8), and his pioneering work encompassed a huge range of topics, most significantly real analysis, the theory of functions of a complex variable, and theoretical mechanics. Twenty-six volumes of his collected papers were published between 1882 and 1958. The first series (volumes 1-12) consists of papers published by the Academie des Sciences de l'Institut de France; the second series (volumes 13-26) of papers published elsewhere.
Reihe
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Produkt-Hinweis
Illustrationen
Worked examples or Exercises
Maße
Höhe: 297 mm
Breite: 210 mm
Dicke: 23 mm
Gewicht
ISBN-13
978-1-108-00319-3 (9781108003193)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
1. Sur l'analyse des sections angulaires; 2. Sur un nouveau genre de calcul; 3. Sur les formules de Taylor et de Maclaurin; 4. Sur la resultante; 5. Application du calcul; 6. Sur une formule; 7. Sur un nouveau genre d'integrales; 8. Sur les moments lineaires; 9. De l'influence; 10. Sur diverses relations; 11. Demonstration d'un theoreme; 12. Sur les moments lineaires; 13. Usage des moments lineaires; 14. Sur quelques formules; 15. Sur un theoreme; 16. Sur les divers ordres de quantites infiniment petits; 17. Sur les conditions d'equivalence; 18. Usage des moments lineaires; 19. Sur un theoreme d'analyse; 20. Sur quelques transformations; 21. Sur les divers ordres de contact; 22. Application du calcul; 23. Sur les limites; 24. Sur la resolution; 25. Application du calcul; 26. Demonstration du theoreme de Fermat; 27. Sur la nature des racines; 28. Usage du calcul des residus.