This volume is devoted to the Brauer group of a commutative ring and related invariants. Part I presents a new self-contained exposition of the Brauer group of a commutative ring. Included is a systematic development of the theory of Grothendieck topologies and étale cohomology, and discussion of topics such as Gabber's theorem and the theory of Taylor's big Brauer group of algebras without a unit. Part II presents a systematic development of the Galois theory of Hopf algebras with special emphasis on the group of Galois objects of a cocommutative Hopf algebra. The development of the theory is carried out in such a way that the connection to the theory of the Brauer group in Part I is made clear. Recent developments are considered and examples are included.
The Brauer-Long group of a Hopf algebra over a commutative ring is discussed in Part III. This provides a link between the first two parts of the volume and is the first time this topic has been discussed in a monograph.
Audience: Researchers whose work involves group theory. The first two parts, in particular, can be recommended for supplementary, graduate course use.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 28 mm
Gewicht
ISBN-13
978-1-4020-0346-2 (9781402003462)
DOI
10.1007/978-94-015-9038-9
Schweitzer Klassifikation
I The Brauer group of a commutative ring.- 1 Morita theory for algebras without a unit.- 2 Azumaya algebras and Taylor-Azumaya algebras.- 3 The Brauer group.- 4 Central separable algebras.- 5 Amitsur cohomology and étale cohomology.- 6 Cohomological interpretation of the Brauer group.- II Hopf algebras and Galois theory.- 7 Hopf algebras.- 8 Galois objects.- 9 Cohomology over Hopf algebras.- 10 The group of Galois (co)objects.- 11 Some examples.- III The Brauer-Long group of a commutative ring.- 12 H-Azumaya algebras.- 13 The Brauer-Long group of a commutative ring.- 14 The Brauer group of Yetter-Drinfel'd module algebras.- A Abelian categories and homological algebra.- A.1 Abelian categories.- A.2 Derived functors.- B Faithfully flat descent.- C Elementary algebraic K-theory.