About Ralph Henstock.- to the new integrals.- Some applications of a theorem of Marcinkiewicz.- The superposition operators in the space of Henstock-Kurzweil integrable functions.- New and old results concerning Henstock's integrals.- Double integrals and convergence of double series.- Integration in infinite-dimensional spaces.- The PU-integral: its definition and some basic properties.- 1-differentials on 1-cells: a further study.- Generalized convergence theorems for Denjoy-Perron integrals.- On some aspects of open multifunctions.- Infinite-dimensional generalised Riemann integrals.- The space of Henstock integrable functions II.- Divergence theorem for vector fields with singularities.- Some properties of dyadic primitives.- Analysis of P. Malliavin's proof of non spectralsyn thesis.- Papers of G. Cross, Y. Kubota, J.L. Mawhin, M. Morayne, W.F. Pfeffer and W.-C. Yang, and C.A. Rogers.- Problems.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 12 mm
Gewicht
ISBN-13
978-3-540-52322-2 (9783540523222)
DOI
Schweitzer Klassifikation
About Ralph Henstock.- to the new integrals.- Some applications of a theorem of Marcinkiewicz.- The superposition operators in the space of Henstock-Kurzweil integrable functions.- New and old results concerning Henstock's integrals.- Double integrals and convergence of double series.- Integration in infinite-dimensional spaces.- The PU-integral: its definition and some basic properties.- 1-differentials on 1-cells: a further study.- Generalized convergence theorems for Denjoy-Perron integrals.- On some aspects of open multifunctions.- Infinite-dimensional generalised Riemann integrals.- The space of Henstock integrable functions II.- Divergence theorem for vector fields with singularities.- Some properties of dyadic primitives.- Analysis of P. Malliavin's proof of non spectralsyn thesis.- Papers of G. Cross, Y. Kubota, J.L. Mawhin, M. Morayne, W.F. Pfeffer and W.-C. Yang, and C.A. Rogers.- Problems.