This book, first published in 1998, continues the long-standing and highly successful series on amorphous silicon science and technology. The opening article honors the pioneering use of photons to probe silicon films and provides an historical overview of optical absorption for studies of the Urbach edge and disorder. Additional invited presentations focus on new approaches for the fabrication of higher stability amorphous silicon-based materials and solar cells, and on the characterization of materials and cells both structurally and electronically. The book includes topics relevant to solar cells, including the role of hydrogen in metastability phenomena and deposition processes, and the application of atomistic material simulations in elucidating film growth mechanisms and structure as characterized by in situ probes. Chapters are devoted to nanostructures, such as quantum dots and wires, and to nano/microcrystalline and poly/single crystalline films, the latter involving new concepts in crystalline grain growth and epitaxy. Device applications are also highlighted, such as thin-film transistors, solar cells, and image sensors, operable on the meter scale, to memories, operable on the nanometer scale.
This book, first published in 1998, continues the long-standing and highly successful series on amorphous silicon science and technology. The opening article honors the pioneering use of photons to probe silicon films and provides an historical overview of optical absorption for studies of the Urbach edge and disorder. Additional invited presentations focus on new approaches for the fabrication of higher stability amorphous silicon-based materials and solar cells, and on the characterization of materials and cells both structurally and electronically. The book includes topics relevant to solar cells, including the role of hydrogen in metastability phenomena and deposition processes, and the application of atomistic material simulations in elucidating film growth mechanisms and structure as characterized by in situ probes. Chapters are devoted to nanostructures, such as quantum dots and wires, and to nano/microcrystalline and poly/single crystalline films, the latter involving new concepts in crystalline grain growth and epitaxy. Device applications are also highlighted, such as thin-film transistors, solar cells, and image sensors, operable on the meter scale, to memories, operable on the nanometer scale.
Reihe
Sprache
Verlagsort
Zielgruppe
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Illustrationen
Worked examples or Exercises
Maße
Höhe: 229 mm
Breite: 152 mm
Dicke: 13 mm
Gewicht
ISBN-13
978-1-55899-435-5 (9781558994355)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Herausgeber*in
University of Illinois, Urbana-Champaign
Louisiana State University
University College London