Aufbauend auf ihrem Band "Einführung in die Arithmetik" vertiefen die Autoren hier elementares mathematisches Hintergrundwissen zur Arithmetik und Zahlentheorie für Lehramtsstudierende der Primar- und Sekundarstufe. Themen des Buches sind spannende zahlentheoretische Problemstellungen als Einstieg, Teiler/Vielfache/Reste, Primzahlen unter vielen faszinierenden Aspekten und speziell als Bausteine der natürlichen Zahlen, größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches, Teilbarkeitsregeln im Dezimalsystem und in anderen Stellenwertsystemen, Dezimalbrüche, Restklassenmengen, grundlegende algebraische Strukturen sowie praktische Anwendungen (Prüfziffernverfahren). Wie schon der Band "Einführung in die Arithmetik" zeichnet sich auch dieses Buch durch eine sorgfältige Erarbeitung grundlegender Begriffe, eine ausführliche Darstellung der Beweise, den Einsatz verschiedener Begründungsniveaus und eine reiche Auswahl an Übungsaufgaben aus. Den Studierenden wird so der Zugang zur Arithmetik und Zahlentheorie erleichtert und sie werden zugleich stärker für eine selbstständige Auseinandersetzung mit den Inhalten motiviert. Für eine tiefergehende Beschäftigung mit Inhalten der Zahlentheorie haben die Autoren den Band "Elementare Zahlentheorie" geschrieben.
Diese Neuauflage basiert auf der gründlichen Überarbeitung des Bandes "Vertiefung Mathematik Primarstufe - Arithmetik/Zahlentheorie" und enthält zusätzlich ein neues Kapitel über schriftliche Rechenverfahren im Dezimalsystem und in nichtdezimalen Stellenwertsystemen.
Zielgruppe
Studierende des Lehramts der Primarstufe und Sekundarstufe
Lehrer(innen), die das erforderliche Hintergrundwissen für ihren Arithmetikunterricht vertiefen wollen
Lehrerfortbildung
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Editions-Typ
Illustrationen
10
67 s/w Abbildungen, 10 farbige Abbildungen
XVIII, 285 S. 77 Abb., 10 Abb. in Farbe.
Maße
Höhe: 240 mm
Breite: 168 mm
Dicke: 17 mm
Gewicht
ISBN-13
978-3-662-61104-3 (9783662611043)
DOI
10.1007/978-3-662-61105-0
Schweitzer Klassifikation
Prof. Dr. Andreas Büchter, Fakultät für Mathematik, Universität Duisburg-Essen
Prof. Dr. Friedhelm Padberg, Fakultät für Mathematik, Universität Bielefeld