Real Analysis: A Constructive Approach Through Interval Arithmetic presents a careful treatment of calculus and its theoretical underpinnings from the constructivist point of view. This leads to an important and unique feature of this book: All existence proofs are direct, so showing that the numbers or functions in question exist means exactly that they can be explicitly calculated. For example, at the very beginning, the real numbers are shown to exist because they are constructed from the rationals using interval arithmetic. This approach, with its clear analogy to scientific measurement with tolerances, is taken throughout the book and makes the subject especially relevant and appealing to students with an interest in computing, applied mathematics, the sciences, and engineering.
The first part of the book contains all the usual material in a standard one-semester course in analysis of functions of a single real variable: continuity (uniform, not pointwise), derivatives, integrals, and convergence. The second part contains enough more technical material--including an introduction to complex variables and Fourier series--to fill out a full-year course. Throughout the book the emphasis on rigorous and direct proofs is supported by an abundance of examples, exercises, and projects--many with hints--at the end of every section. The exposition is informal but exceptionally clear and well motivated throughout.
Reihe
Sprache
Verlagsort
Zielgruppe
Maße
Höhe: 254 mm
Breite: 178 mm
Gewicht
ISBN-13
978-1-4704-5144-8 (9781470451448)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Mark Bridger, Northeastern University, Boston, MA.
Preliminaries
The real numbers and completeness
An inverse function theorem and its application
Limits, sequences and series
Uniform continuity
The Riemann integral
Differentiation
Sequences and series of functions
The complex numbers and Fourier series
References
Index.