Introduction to Large Truncated Toeplitz Matrices is a text on the application of functional analysis and operator theory to some concrete asymptotic problems of linear algebra. The text is accessible to readers with basic knowledge in functional analysis. It is addressed to graduate students, teachers, and researchers with some inclination to concrete operator theory and should be of interest to everyone who has to deal with infinite matrices (Toeplitz or not) and their large truncations.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 20 mm
Gewicht
ISBN-13
978-0-387-98570-1 (9780387985701)
DOI
10.1007/978-1-4612-1426-7
Schweitzer Klassifikation
1 Infinite Matrices.- 1.1 Boundedness and Invertibility.- 1.2 Laurent Matrices.- 1.3 Toeplitz Matrices.- 1.4 Hankel Matrices.- 1.5 Wiener-Hopf Factorization.- 1.6 Continuous Symbols.- 1.7 Locally Sectorial Symbols.- 1.8 Discontinuous Symbols.- 2 Finite Section Method and Stability.- 2.1 Approximation Methods.- 2.2 Continuous Symbols.- 2.3 Asymptotic Inverses.- 2.4 The Gohberg-Feldman Approach.- 2.5 Algebraization of Stability.- 2.6 Local Principles.- 2.7 Localization of Stability.- 3 Norms of Inverses and Pseudospectra.- 3.1C*-Algebras.- 3.2 Continuous Symbols.- 3.3 Piecewise Continuous Symbols.- 3.4 Norm of the Resolvent.- 3.5 Limits of Pseudospectra.- 3.6 Pseudospectra of Infinite Toeplitz Matrices.- 4 Moore-Penrose Inverses and Singular Values.- 4.1 Singular Values of Matrices.- 4.2 The Lowest Singular Value.- 4.3 The Splitting Phenomenon.- 4.4 Upper Singular Values.- 4.5 Moler's Phenomenon.- 4.6 Limiting Sets of Singular Values.- 4.7 The Moore-Penrose Inverse.- 4.8 Asymptotic Moore-Penrose Inversion.- 4.9 Moore-Penrose Sequences.- 4.10 Exact Moore-Penrose Sequences.- 4.11 Regularization and Kato Numbers.- 5 Determinants and Eigenvalues.- 5.1 The Strong Szegö Limit Theorem.- 5.2 Ising Model and Onsager Formula.- 5.3 Second-Order Trace Formulas.- 5.4 The First Szegö Limit Theorem.- 5.5 Hermitian Toeplitz Matrices.- 5.6 The Avram-Parter Theorem.- 5.7 The Algebraic Approach to Trace Formulas.- 5.8 Toeplitz Band Matrices.- 5.9 Rational Symbols.- 5.10 Continuous Symbols.- 5.11 Fisher-Hartwig Determinants.- 5.12 Piecewise Continuous Symbols.- 6 Block Toeplitz Matrices.- 6.1 Infinite Matrices.- 6.2 Finite Section Method and Stability.- 6.3 Norms of Inverses and Pseudospectra.- 6.4 Distribution of Singular Values.- 6.5 Asymptotic Moore-Penrose Inversion.- 6.6 TraceFormulas.- 6.7 The Szegö-Widom Limit Theorem.- 6.8 Rational Matrix Symbols.- 6.9 Multilevel Toeplitz Matrices.- 7 Banach Space Phenomena.- 7.1 Boundedness.- 7.2 Fredholmness and Invertibility.- 7.3 Continuous Symbols.- 7.4 Piecewise Continuous Symbols.- 7.5 Loss of Symmetry.- References.- Symbol Index.