A real matrix is positive semidefinite if it can be decomposed as A=BB'. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB' is known as the cp-rank of A.This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined.
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Maße
Höhe: 238 mm
Breite: 156 mm
Dicke: 19 mm
Gewicht
ISBN-13
978-981-238-368-6 (9789812383686)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
Autor*in
Technion-israel Inst Of Tech, Israel
The Max Stern Yezreel Valley College, Israel
Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M-Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?