1. Experimental Methods.- 1.1 Accelerators.- 1.2 Ion Sources.- 1.3 Beam Requirements and Limitations.- 1.4 Mass Analyzers.- 1.5 Target Chambers.- 1.6 Targets.- 1.7 Analytical Devices.- 1.8 Detectors.- 1.9 Detection Geometry and Line Width.- 1.10 Beam Monitors.- 1.11 External Fields.- 1.12 Concluding Remarks.- References.- 2. Studies of Atomic Spectra by the Beam-Foil Method.- 2.1 Experimental Methods.- 2.2 Results of Spectral Studies.- 2.2.1 Previously Incompletely-Studied Systems.- 2.2.2 Hydrogen-Like Levels.- 2.2.3 Displaced Terms.- 2.2.4 Multiply-Excited States.- References.- 3. Lifetime Measurements.- 3.1 Lifetime Studies as a Basic Area of Atomic Physics.- 3.1.1 The Need for Lifetime Measurements.- 3.1.2 Lifetime Measurements Prior to the Development of the Beam-Foil Technique.- 3.2 Definitions of Basic Quantities.- 3.2.1 Instantaneous Populations.- 3.2.2 Transition Probabilities and Oscillator Strengths.- 3.3 Measurement of Beam-Foil-Excited Decay Curves.- 3.3.1 Strengths and Limitations of the Beam-Foil Technique.- 3.3.2 Details of Beam-Foil Apparatus and Measurement Procedures.- 3.3.3 Cascade Repopulation - A Tractable Problem.- 3.4 Time Dependence of the Measured Decay Curves.- 3.4.1 Solution of the Driven Coupled Linear Rate Equations.- 3.4.2 A Quantitative Indicator of Level Repopulation -The Replenishment Ratio.- 3.4.3 Intensity Relationships for an Aligned Source.- 3.4.4 Distortions Which Preserve the Mean-Life Content of a Decay Curve.- 3.5 Mean-Life Extraction by Exponential Fits to Individual Decay Curves.- 3.5.1 Maximum Likelihood Method.- 3.5.2 Non-Linear Least Squares Method.- 3.5.3 Differentiation and Integration of Decay Curves.- 3.5.4 Expansion About a Close-Lying Mean Life.- 3.5.5 Fourier-Transform Methods.- 3.5.6 Method of Moments.- 3.6 Mean-Life Extraction by Joint Analysis of Cascade-Related Decay Curves.- 3.6.1 Ambiguities in the Assignment of Fitted Mean Lives.- 3.6.2 Constrained Fits.- 3.6.3 Linearly-Fitted Normalizations of Cascade-Related Decay Curves.- 3.7 Cascade-Free Methods.- 3.7.1 Beam-Foil Coincidence Techniques.- 3.7.2 Use of Alignment to Discriminate Against Cascades.- 3.7.3 Laser Excitation.- 3.8 Concluding Remarks.- References.- 4. Theoretical Oscillator Strengths of Neutral, Singly-Ionized, and Multiply-Ionized Atoms: The Theory, Comparisons with Experiment, and Critically-Evaluated Tables with New Results.- 4.1 The Non-Closed-Shell Many-Electron Theory.- 4.2 A Spectroscopic Interpretation of the Charge Wave Function.- 4.3 NCMET Calculations,.- 4.3.1 The L2, S2 Symmetry of ?c.- 4.3.2 Dipole Length vs. Dipole Velocity.- 4.3.3 Semi-Internal Orbital Variations (Type A, Lowest-of-Symmetry, States).- 4.4 States Not Lowest of Their Symmetry.- 4.4.1 Neutral and Singly-Ionized Atoms.- 4.4.2 Variational Collapse and Its Avoidance.- 4.5 New Oscillator Strengths for Intershell (KL ? KL'[M]) Transitions to Pre-Rydberg Levels (V ? pR).- 4.6 Further Examination of Remaining Correlation Effects on Oscillator Strengths with NCMET.- 4.7 Conclusion.- References.- 5. Regularities of Atomic Oscillator Strengths in Isoelectronic Sequences.- 5.1 Theoretical Basis.- 5.1.1 Definitions.- 5.1.2 Nuclear Charge-Dependence of the f-Value.- 5.1.3 Investigation of Lim 1/Z ? 0.- 5.2 Discussion of Established Trends.- 5.2.1 Basic Trends.- 5.2.2 Curves With a Maximum.- 5.2.3 Curves With a Minimum.- 5.2.4 Anomalous Curves.- 5.3 Oscillator-Strength Distributions in a Spectral Series Along an Isoelectronic Sequence.- 5.4 Relativistic Effects and Corrections.- 5.5 Summary.- References.- 6. Applications to Astrophysics; Absorption Spectra. By Ward Whaling.- 6.1 Branching Ratios.- 6.1.1 Light Sources.- 6.1.2 Spectrometers.- 6.1.3 Spectrometer Cali bration.- 6.1.4 Selection of Branches to be Measured.- 6.2 Curve-of-Growth Analysis.- 6.2.1 Construction of a Curve-of-Growth.- 6.2.2 Internal-Consistency Test.- 6.2.3 Comparison of Transition Probabilities for Different Transitions.- 6.2.4 Solar-Abundance Determination.- 6.3 Beam-Foil-Spectroscopy Measurements Needed for Astrophysical Applications.- References.- 7. Applications of Beam-Foil Spectroscopy to the Solar Ultraviolet Emission Spectrum.- 7.1 Ionization Balance in the Chromosphere and Corona.- 7.2 Excitation Balance in the Chromosphere and Corona.- 7.3 Line-Ratio Measurements of Electron Temperature.- 7.4 Line-Ratio Measurements of Electron Density.- 7.5 The Determination of Chromospheric-Coronal Abundances.- 7.6 Beam-Foil Measurements Needed for Diagnostic Methods.- References.- 8. Studies of Hydrogen-Like and Helium-Like Ions of High Z.- 8.1 The Lamb Shift in the One-Electron System.- 8.1.1 Quenching Measurements on Fast Ion Beams of High Z.- 8.1.2 Lamb Shift in Hydrogen Using Separated Oscillating Fields.- 8.2 Lamb Shift in Two-Electron Systems.- 8.3 Radiative Decay of the 2S1/2 Metastable State of the One-Electron System.- 8.3.1 Theory.- 8.3.2 Experiments.- 8.4 Forbidden Radiative Decay in the n=2 State of the Two-Electron System.- 8.4.1 Radiative Decay from 2 1S0.- 8.4.2 Radiative Decay from 2 3S1.- 8.4.3 Radiative Decay from 2 3P2.- 8.4.4 Radiative Decay from 2 3P1.- 8.5 Study of Doubly-Excited Configurations in the Two-Electron System.- References.- 9. Coherence, Alignment, and Orientation Phenomena in the Beam-Foil Light Source.- 9.1 General Theoretical Considerations.- 9.1.1 The Emission Process.- 9.1.2 Symmetry Considerations.- 9.2 Alignment and Linear Polarization.- 9.2.1 Zero-Field Measurements.- 9.2.2 Electric Field.- 9.2.3 Magnetic Field.- 9.3 Orientation and Circular Polarization.- 9.3.1 Zero Field.- 9.3.2 Magnetic Field Measurements.- 9.3.3 The Quadratic Stark Effect.- References.- 10. The Measurement of Autoionizing Ion Levels and Lifetimes by Fast Projectile Electron Spectroscopy.- 10.1 The Fast-Projectile Electron Spectroscopy (FPES) Method.- 10.1.1 Choice of an Analyzer.- 10.1.2 Properties of a Cylindrical-Mirror Analyzer Suitable for FPES.- 10.1.3 Kinematic Modification of Analyzer Optimization Criteria.- 10.1.4 Relativistic Corrections to Analyzer Performance.- 10.1.5 Broadening from Transverse Velocity Spread.- 10.1.6 Further Kinematic Considerations: Sample Estimates of Net Line Widths Observed in FPES.- 10.1.7 Summary of the Advantages of FPES.- 10.2 Examples of FPES.- 10.2.1 Spectra of Long-Lived States of the Li-Like, Be-Like, and B-Like Ions.- 10.2.2 Spectra of Long-Lived Core-Excited States of Sodium-Like Chlorine.- 10.2.3 Core-Excited States of the Neutral and Nearly-Neutr?l Alkali Metals.- 10.2.4 Electron Background in FPES with Foil Targets.- 10.2.5 Electron Background in FPES with Gas Targets.- 10.3 The Measurement of Auger Lifetimes by FPES.- 10.3.1 Auger Lifetimes of Metastable Lithium-Like Ions.- 10.3.2 Examples of Lifetimes from Optical Decay Channels of Auger-Emitting Levels.- References.- APPENDIX (Up-dated bibliography).