J. H. Barnett, D. K. Ruch, and N. A. Scoville, Contents; Introduction: J. H. Barnett, D. K. Ruch, and N. A. Scoville, Teaching and Learning with Primary Source Projects; J. H. Barnett, D. K. Ruch, and N. A. Scoville, PSP Summaries: The Collection at a Glance; J. H. Barnett, Historical Overview; Real Analysis: J. H. Barnett, Why Be So Critical? Nineteenth-Century Mathematics and the Origins of Analysis; D. Ruch, Investigations into Bolzano's Bounded Set Theorem; M. P. Saclolo, Stitching Dedekind Cuts to Construct the Real Numbers; D. Ruch, Investigations into d'Alembert's Definition of Limit; D. Ruch, Bolzano on Continuity and the Intermediate Value Theorem; N. Somasunderam, Understanding Compactness: Early Work, Uniform Continuity to the Heine-Borel Theorem; D. Ruch, An Introduction to a Rigorous Definition of Derivative; J. H. Barnett, Rigorous Debates over Debatable Rigor: Monster Functions in Introductory Analysis; D. Ruch, The Mean Value Theorem; D. Ruch, Euler's Rediscovery of $e$; D. Ruch, Abel and Cauchy on a Rigorous Approach to Infinite Series; D. Ruch, The Definite Integrals of Cauchy and Riemann; J. H. Barnett, Henri Lebesgue and the Development of the Integral Concept; Topology: N. A. Scoville, The Cantor Set before Cantor; N. A. Scoville, Topology from Analysis; N. A. Scoville, Nearness without Distance; N. A. Scoville, Connectedness: Its Evolution and Applications; N. A. Scoville, Connecting Connectedness; N. A. Scoville, From Sets to Metric Spaces to Topological Spaces; N. A. Scoville, The Closure Operation as the Foundation of Topology; N. A. Scoville, A Compact Introduction to a Generalized Extreme Value Theorem; Complex Variables: D. Klyve, The Logarithm of $-1$; D. Ruch, Riemann's Development of the Cauchy-Riemann Equations; D. Ruch, Gauss and Cauchy on Complex Integration.