Introduction: Hommage a Jean-Louis Verdier- au jardin des systemes integrables, D. Bennequin; PART I Algebro-Geometric Methods and Tau-functions: Compactified Jacobians of Tangential Covers, A. Treibich; Heisenberg Action and Verlinde Formulas, B. van Geemen and E. Previato; Hyperelliptic Curves that Generate Constant Mean Curvature Tori in R3, N. Ercolani, H. Knorrer, and E. Trubowitz; Modular Forms as Tau-Functions for Certain Integrable Reductions of the Yang-Mills Equations, L. A. Takhtajan; The r-functions of the gAKNS equations, G. Wilson; On Segal-Wilson's definition of the r-function and hierarchies AKNS-D and mcKP, L. A. Dickey; The boundary of isospectral manifolds, Backlund transformations and regularization, P. van Moerbeke; PART 2 Hamiltonian Methods: The Geometry of the Full Toda Lattice, N. M. Ercolani, H. Flaschka, and S. Singer; Deformations of a Hamiltonian action of a Compact Lie Group, V. Guillemin; Linear-Quadratic Metrics "approximate" any nondegenerate, integrable Riemannian metric on the 2-Sphere and the 2-Torus, A. T Fomenko; Canonical Forms for BiHamiltonian Systems, P. J. Olver; BiHamiltonian manifolds and Sato's Equations, P. Casati, F. Magri, and M. Pedroni. PART 3 Solvable Lattice Models: Generalized Chiral Potts Models and Minimal Cyclic Representations of Uq(gl(n,C)), E. Date; Infinite Discrete Symmetry Group for the Yang-Baxter Equations and their Higher-Dimensional Generalizations, M. Bellon, J.-M. Maillard, and C. M. Viallet. PART 4 Topological Field Theory: Integrable Systems and Classification of 2-dimensional Topological Field Theories, B. Dubrovin; List of Participants;