Preface
Preface
Chapter 1: Free Energy Methods in Drug Discovery-Introduction, Zoe Cournia, Christophe Chipot, Benoit Roux, Darrin M. York, and Woody Sherman
Chapter 2: Use of Free Energy Methods in the Drug Discovery Industry, Katharina Meier, Joseph P. Bluck, and Clara D. Christ
Chapter 3: Perspective on the SAMPL and D3R Blind Prediction Challenges for Physics-Based Free Energy Methods, Nicolas Tielker, Lukas Eberlein, Oliver Beckstein, Stefan Guessregen, Bogdan I. Iorga, Stefan M. Kast, and Shuai Liu
Chapter 4: On the Issues Impacting Reproducibility of Alchemical Free Energy Calculations, Miroslav Suruzhon, Marley L. Samways, and Jonathan W. Essex
Chapter 5: Prospective Application of Free Energy Methods in Drug Discovery Programs, Ayseguel OEzen, Emanuele Perola, Natasja Brooijmans, and Joseph Kim
Chapter 6: Computational Approaches for Protein pKa Calculations, Dilek Coskun
Chapter 7: Robust, Efficient and Automated Methods for Accurate Prediction of Protein-Ligand Binding Affinities in AMBER Drug Discovery Boost, Tai-Sung Lee, Hsu-Chun Tsai, Abir Ganguly, Timothy J. Giese, and Darrin M. York
Chapter 8: Impacting Drug Discovery Projects with Large-Scale Enumerations, Machine Learning Strategies, and Free-Energy Predictions, Jennifer L. Knight, Karl Leswing, Pieter H. Bos, and Lingle Wang
Chapter 9: Optimizing Simulations Protocols for Relative Free Energy Calculations, Paul Labute and Maximilian Ebert
Chapter 10: Fast, Routine Free Energy of Binding Estimation Using Movable Type, Lance M. Westerhoff and Zheng Zheng
Chapter 11: Free Energy Methods in Drug Discovery: Who We Are, Where We Are, and Where We Are Going, Kira A. Armacost, Eric C. Gladstone, and David C. Thompson
Editors' Biographies
Author Index
Subject Index