"Lie Theory," a set of three independent, self-contained volumes, features surveys and original work by well-established researchers in key areas of semisimple Lie groups. A wide range of topics is covered, including unitary representation theory and harmonic analysis. "Lie Theory: Lie Algebras and Representations" contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." Both papers are comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. Ideal for graduate students and researchers, each volume of "Lie Theory" provides a broad, clearly focused examination of semisimple Lie groups and their integral importance to research in many branches of mathematics.
Rezensionen / Stimmen
"The references in this volume are extensive (especially for positive characteristic results) and include literature as recent as 2002.
Some of Jantzen's techniques seem to be unmotivated at first, but he rewards the patient reader with background and motivation as he moves through the book, often starting with a simple case in a classical group/algebra and providing motivation by generalizing the situation later. The detailed work is also surprisingly free of logical and typographical errors; Jantzen has been very careful at every turn.
....
...Neeb's article is a good starting point for learning about the analytic side of the unitary representation theory of infinite-dimensional groups."
-SIAM Book Reviews
"This is the first volume in a series of three on the theory of semisimple Lie groups. It consists of two independent articles, which both are devoted to realtions between representation theory and adjoint or coadjoint orbits." ---Monatshefte für Mathematik