Strings and linear topologies.- Metrizable topological vector spaces.- Projective limits of topological vector spaces.- Inductive limits of topological vector spaces.- Topological direct sums, strict inductive limits.- Barrelled topological vector spaces.- The Banach-steinhaus theorem.- Barrelled spaces and the closed graph theorem.- Barrelled spaces and the open mapping theorem.- Completeness and the closed graph theorem.- Bornological spaces.- Spaces of continuous linear mappings and their completion.- Quasibarrelled spaces.- Boundedly summing spaces.- Locally topological spaces.- Spaces with an absorbing sequence.- ?-locally topological spaces.- (DF)-spaces and spaces with a fundamental sequence of compact sets.- Some examples and counter examples.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 8 mm
Gewicht
ISBN-13
978-3-540-08662-8 (9783540086628)
DOI
Schweitzer Klassifikation
Strings and linear topologies.- Metrizable topological vector spaces.- Projective limits of topological vector spaces.- Inductive limits of topological vector spaces.- Topological direct sums, strict inductive limits.- Barrelled topological vector spaces.- The Banach-steinhaus theorem.- Barrelled spaces and the closed graph theorem.- Barrelled spaces and the open mapping theorem.- Completeness and the closed graph theorem.- Bornological spaces.- Spaces of continuous linear mappings and their completion.- Quasibarrelled spaces.- Boundedly summing spaces.- Locally topological spaces.- Spaces with an absorbing sequence.- ?-locally topological spaces.- (DF)-spaces and spaces with a fundamental sequence of compact sets.- Some examples and counter examples.