Algebraic theories, introduced as a concept in the 1960s, have been a fundamental step towards a categorical view of general algebra. Moreover, they have proved very useful in various areas of mathematics and computer science. This carefully developed book gives a systematic introduction to algebra based on algebraic theories that is accessible to both graduate students and researchers. It will facilitate interactions of general algebra, category theory and computer science. A central concept is that of sifted colimits - that is, those commuting with finite products in sets. The authors prove the duality between algebraic categories and algebraic theories and discuss Morita equivalence between algebraic theories. They also pay special attention to one-sorted algebraic theories and the corresponding concrete algebraic categories over sets, and to S-sorted algebraic theories, which are important in program semantics. The final chapter is devoted to finitary localizations of algebraic categories, a recent research area.
Rezensionen / Stimmen
'The book is very well written and made as self-contained as it is reasonable for the intended audience of graduate students and researchers.' Zentralblatt MATH
Reihe
Sprache
Verlagsort
Zielgruppe
Illustrationen
50 Line drawings, black and white
Maße
Höhe: 235 mm
Breite: 157 mm
Dicke: 20 mm
Gewicht
ISBN-13
978-0-521-11922-1 (9780521119221)
Copyright in bibliographic data and cover images is held by Nielsen Book Services Limited or by the publishers or by their respective licensors: all rights reserved.
Schweitzer Klassifikation
J. Adamek is a Professor in the Institute of Theoretical Computer Science at the University of Technology, Braunschweig, Germany. J. Rosicky is a Professor in the Department of Mathematics and Statistics at Masaryk University, Brno, Czech Republic. E. M. Vitale is a Professor in the Institut de Recherche en Mathematique et Physique at the Universite Catholique de Louvain, Louvain-la-Neuve, Belgium.
Autor*in
Technische Universitaet Carolo Wilhelmina zu Braunschweig, Germany
Masarykova Univerzita v Brne, Czech Republic
Universite Catholique de Louvain, Belgium
Vorwort
Foreword F. W. Lawvere; Introduction; Preliminaries; Part I. Abstract Algebraic Categories: 1. Algebraic theories and algebraic categories; 2. Sifted and filtered colimits; 3. Reflexive coequalizers; 4. Algebraic categories as free completions; 5. Properties of algebras; 6. A characterization of algebraic categories; 7. From filtered to sifted; 8. Canonical theories; 9. Algebraic functors; 10. Birkhoff's variety theorem; Part II. Concrete Algebraic Categories: 11. One-sorted algebraic categories; 12. Algebras for an endofunctor; 13. Equational categories of ?-algebras; 14. S-sorted algebraic categories; Part III. Selected Topics: 15. Morita equivalence; 16. Free exact categories; 17. Exact completion and reflexive-coequalizer completion; 18. Finitary localizations of algebraic categories; A. Monads; B. Abelian categories; C. More about dualities for one-sorted algebraic categories; Summary; Bibliography; Index.