Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Jaydip Kumar
Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow (UP), India
The Internet of Things (IoT) provides to the client an effective technique for communicating with the Web world through ubiquitary object enabled networks. The rapid progress in IoT connected devices creates a huge amount of data in a second from personal and industrial devices. This information should be utilized to help business and functional objectives. Thus, there is an urgent requirement for adopting cloud computing, big data, and artificial intelligence techniques to enable storage, analytics, and decision making. In this article, we focused our consideration to integrate Cloud Computing, Big data and Artificial Intelligence technique with the Internet of Things devices. Cloud computing, Big Data, Artificial Intelligence, and IoT are different techniques that are already part of our life. Their adoption and uses are expected to make them more comprehensive and make them essential components of the future Internet. The Internet of Things (IoT) is a system of interconnected gadgets, digital or mechanical machines that are given exceptional identifiers and the capacity to move information over an organization without expecting human-to-human or human-to-pc collaboration.
Keywords: Artificial intelligence, big data, cloud computing, Internet of Things
With the wide-spread discovery of techniques in the current digital era, increasing physical entities are interconnected to the Internet of Things (IoT) devices. In recent years IoT technologies are applied with different techniques such as Artificial Intelligence, Big Data, and Cloud Computing. Artificial Intelligence (AI) is a technique which has the ability to compute a huge amount of task that is usually done by a human. Artificial Intelligence uses different learning techniques to facilitate automatic rules and regulations for decision making. Artificial intelligence is divided into two different modules such as learning module and predicate module [1]. The learning module is used for effective data collection, training, and data modeling. And the predicate module is used to take action on the current situation. The flow and storage of exponentially increasing data are easily managed by Artificial Intelligence (AI). The integration of cloud computing and IoT are also two different technologies that assume a vital part in our daily life. Cloud computing and the Internet of Things are merged together is expected to break both current and future internet which we called as new paradigm CloudIoT [2]. In the era of the internet which plays a fundamental role in cloud computing, it seems to be represented as a medium or the platform through which many different cloud computing services are accessible or delivered its services. If you are thinking that the internet as a virtual "space" for connecting users from over the globe, it is like a cloud, sharing information by using the internet. Cloud computing is the trending technology in the daily life of everyone which provides on-demand web services such as networking devices, data storage, servers, and applications. It provides higher flexibility and cost efficiency while users try to use cloud computing resources and applications. The different number of connected devices has already exceeded the number of users on the earth. This is due to exponential increase of connected devices rapidly increasing huge amount of data as well. The storage of data locally and temporarily will not be possible to access different devices which are connected to each other. There is a need to be centrally storage space which is provided by cloud storage [3]. And the intense invention in the Internet of Things (IoT) technologies, the Big Data technique has critical data analytics tools which bring the knowledge within the IoT devices to make the better purpose of IoT systems and support critical decision making. Big Data has been divided into five fundamental bases such as volume, variety, velocity, veracity, and value. The volume indicates the size of the data. And the different types of data from different sources are known as variety. The real-time data collection is known as velocity, and veracity is the uncertainty of data and the value which shows the benefits of different industrial and academic fields [4]. The combination of IoT and Big Data has created opportunities to develop complex systems for different industries such as healthcare, smart city, military and agriculture, education, etc. The flow diagram of AI, Big data, and cloud computing integrated with the Internet of Things is given below in Figure 1.1.
Figure 1.1 Flow diagram of AI, big data, and cloud computing integrated with Internet of Things.
Internet of Things (IoT) is an interconnection of various devices which are connected to each other through the internet and exchange information. These IoT devices generate a huge amount of information [5]. Artificial Intelligence (AI) uses the decision-making support system to provide data flow and storage in IoT networks. The integration of artificial intelligence (AI) with the Internet of Things (IoT) techniques will generate extraordinary value-creation opportunities. The IoT devices with AI enabled the rise of a "factory of the future" [6]. This increases the efficiency, turnaround, and waiting time and reduces the cost. The IoT with AI is used in different fields such as 3D printing, Robotics, the food industry, manufacturing, logistics, and supply chain management. These fields create lots of information in a regular mode which is centrally stored in cloud computing. It can be said that the cloud with IoT will be the future of the next generation of the internet. However, the cloud computing services are fully dependent on cloud service providers but IoT technologies are based on diversity [7]. Cloud computing reduces the cost of the use of applications and their services for users. It also simplifies the flow of Internet of Things data capturing and processing and also provides fast and cheapest cost integration, installation, and deployment. And without Big Data analytic applications, the huge amount of data generated by the IoT devices creates an overhead for any business. Due to this any organization must know how to handle this massive amount of data that is collected by the IoT devices. Fetching accurate data is not a problem for any organization; the challenge is to get the necessary skills in the analytical analysis field to deal with big data [8].
For addressing any problem AI needs to two-step process which is shown in Figure 1.2. A set of AI models has been created in the first stage. The models are created by the machine learning algorithm with a set of training data. These trained data are processed by the natural language documents or by the encoding of human expertise [14]. The models are invented in different categories like neural networks, decision trees, and inference rules. The models use the inferences from the Internet of Things sensor's input data and guide the operations of the system [9, 18]. There are lots of work have been completed with the integration of Artificial intelligence and Internet of Things. We have mainly surveyed previous works on the personal and industrial applications such as attendance monitoring system, human activity and presence in hospitality, agricultural applications, hospital, human stress monitoring [15, 21]. The short review of IoT applications domains are given below Table 1.1 and the difference between the AI and IoT are given below in Table 1.2.
Figure 1.2 Integration architecture of AI in IoT.
Table 1.1 Recent Artificial Intelligence based Internet of Things applications.
Table 1.2 Table of differences between the internet of things and artificial intelligence.
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.