Geotechnical Engineering Calculations and Rules of Thumb

 
 
Butterworth-Heinemann (Verlag)
  • 2. Auflage
  • |
  • erschienen am 18. November 2015
  • |
  • 508 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-804648-7 (ISBN)
 

Geotechnical Engineering Calculations and Rules of Thumb, Second Edition, offers geotechnical, civil and structural engineers a concise, easy-to-understand approach to selecting the right formula and solving even most difficult calculations in geotechnical engineering. A 'quick look up guide', this book places formulas and calculations at the reader's finger tips. In this book, theories are explained in a 'nutshell' and then the calculation is presented and solved in an illustrated, step-by-step fashion. In its first part, the book covers the fundamentals of Geotechnical Engineering: Soil investigation, condition and theoretical concepts. In the second part it addresses Shallow Foundations, including bearing capacity, elastic settlement, foundation reinforcement, grillage design, footings, geogrids, tie and grade beams, and drainage. This session ends with a chapter on selecting foundation types. The next part covers Earth Retaining Structures and contains chapters on its basic concepts and types, gabion walls and reinforced earth walls. The following part covers Geotechnical Engineering Strategies providing coverage of softwares, instrumentation, excavations, raft design, rock mechanics, dip angle and strike, rock stabilization equipment, soil anchors, tunnel design, seismology, geosynthetics, and slurry cutoff walls. The final part is on Pile Foundations including content on design on sandy soils, clay soils, pin piles, negative skin friction, caissons and pile clusters. In this new and updated edition the author has incorporated new software calculation tools, current techniques for foundation design, liquefaction information, seismic studies, laboratory soil tests, geophysical techniques, new concepts for foundation design and Dam designs. All calculations have been updated to most current material characteristics available in the market. Practicing Geotechnical, Civil and Structural Engineers may find in this book an excellent companion to their day-to day work, benefiting from the clear and direct calculations, examples, and cases. Civil Engineering students may find particular interest in the concise theory presented in the beginning of each chapter.


  • Calculations both in FPS and SI metric systems;
  • Convenient access to all needed calculations;
  • Access to concise theory that helps understand the calculations;
  • Case studies from around the world;
  • Includes new software calculation tools.


Ruwan Rajapakse, PE, CCM, CCE, AVS is a practicing Civil Engineer and a construction manager in New York City. He has been teaching Civil PE courses for over 10 years.
  • Englisch
  • Oxford
  • |
  • USA
Elsevier Science
  • 46,84 MB
978-0-12-804648-7 (9780128046487)
0128046481 (0128046481)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Part 1 - Geotechnical Engineering Fundamentals
  • 1 - Geology and geotechnical engineering
  • 1.1 - Introduction
  • 1.2 - Strength of soils
  • 1.2.1 - Friction
  • 1.2.2 - Cohesion
  • 1.2.2.1 - Gravel, sand, silt, and clay
  • 1.2.2.2 - Pure silt has no cohesion
  • 1.3 - Origin of rocks and sand
  • 1.3.1 - Earth cools down
  • 1.3.2 - Rock weathering
  • 1.4 - Rock types
  • 1.4.1 - Igneous rocks
  • 1.4.2 - Sedimentary rocks
  • 1.4.3 - Metamorphic rocks
  • 1.4.3.1 - Formation of metamorphic rocks
  • 1.5 - Soil strata types
  • 1.5.1 - Water
  • 1.5.1.1 - Alluvial deposits (river beds)
  • 1.5.1.2 - Marine deposits
  • 1.5.1.3 - Lacustrine deposits (lakebeds)
  • 1.5.2 - Wind deposits (eolian deposits)
  • 1.5.3 - Glacial deposits
  • 1.5.3.1 - Characteristics of glacial till (moraine)
  • 1.5.3.2 - Glacio-fluvial deposits
  • 1.5.3.3 - Glacio-lacustrine deposits
  • 1.5.3.4 - Glacio-marine deposits
  • 1.5.4 - Colluvial deposits
  • 1.5.5 - Residual soil (weathered in situ soil)
  • 2 - Site investigation
  • 2.1 - Cohesion
  • 2.2 - Friction
  • 2.2.1 - Measurement of friction
  • 2.2.2 - Measurement of cohesion
  • 2.3 - Origin of a project
  • 2.4 - Geotechnical investigation procedures
  • 2.5 - Literature survey
  • 2.5.1 - Adjacent property owners
  • 2.5.2 - Aerial surveys
  • 2.6 - Field visit
  • 2.6.1 - Hand auguring
  • 2.6.2 - Sloping ground
  • 2.6.3 - Nearby structures
  • 2.6.4 - Contaminated soils
  • 2.6.5 - Underground utilities
  • 2.6.6 - Overhead power lines
  • 2.6.7 - Man-made fill areas
  • 2.6.8 - Field-visit checklist
  • 2.7 - Geophysics
  • 2.7.1 - GPR methods
  • 2.7.1.1 - General methodology
  • 2.7.1.1.1 - Single borehole GPR
  • 2.7.1.1.2 - Crosshole GPR
  • 2.7.2 - Seismic method
  • 2.7.2.1 - Down hole seismic testing
  • 2.7.2.2 - Crosshole seismic testing
  • 2.8 - Subsurface investigation phase
  • 2.8.1 - Soil strata identification
  • 2.8.1.1 - Augering
  • 2.8.1.2 - Mud rotary drilling
  • 2.8.1.2.1 - Boring program
  • 2.8.1.2.2 - Test pits
  • 2.8.1.2.3 - Soil sampling
  • 2.8.1.2.4 - Hand digging prior to drilling
  • 2.9 - Geotechnical field tests
  • 2.9.1 - SPT (N) value
  • 2.9.2 - Pocket penetrometer
  • 2.9.3 - Vane shear test
  • 2.9.3.1 - Vane shear test procedure
  • 2.10 - Correlation between friction angle (f') and SPT (N) value
  • 2.10.1 - Hatakanda and Uchida Equation
  • 2.10.2 - SPT (N) value versus total density
  • 2.11 - SPT (N) value computation based on drill rig efficiency
  • 2.12 - Cone penetration testing (CPT)
  • 2.12.1 - Measurements obtained
  • 2.12.2 - Friction ratio
  • 2.13 - Pressuremeter testing
  • 2.14 - Dilatometer testing
  • 2.15 - SPT-CPT correlations
  • References
  • 3 - Groundwater
  • 3.1 - Vertical distribution of groundwater
  • 3.2 - Aquifers, aquicludes, aquifuges, and aquitards
  • 3.3 - Piezometers
  • 3.3.1 - Piezometric surface versus groundwater level
  • 3.3.2 - Aquitard under pressure
  • 3.3.3 - Vertical upward groundwater flow
  • 3.3.4 - Vertical groundwater flow
  • 3.3.5 - Monitoring wells
  • 3.3.6 - Aquifers with artesian pressure
  • 4 - Soil laboratory testing
  • 4.1 - Sieve analysis
  • 4.1.1 - D60
  • 4.1.2 - Find D30
  • 4.2 - Hydrometer
  • 4.2.1 - Hydrometer test procedure
  • 4.2.1.1 - Procedure
  • 4.3 - Liquid limit, plastic limit, and shrinkage limit (Atterberg limit)
  • 4.3.1 - Liquid limit
  • 4.3.2 - Plastic limit
  • 4.3.3 - Practical considerations of liquid limit and plastic limit
  • 4.3.4 - Shrinkage limit
  • 4.4 - Permeability test
  • 4.4.1 - Seepage rate
  • 4.5 - Unconfined-undrained compressive strength tests (UU tests)
  • 4.6 - Tensile failure
  • 5 - Geotechnical engineering theoretical concepts
  • 5.1 - Vertical effective stress
  • 5.2 - Lateral earth pressure
  • 5.3 - Stress increase due to footings
  • 5.3.1 - Loading on strip footings
  • 5.4 - Overconsolidation ratio
  • 5.4.1 - Overconsolidation due to glaciers
  • 5.4.2 - Overconsolidation due to groundwater lowering
  • 5.5 - Soil compaction
  • 5.5.1 - Modified Proctor test procedure
  • 5.5.2 - Controlled fill applications
  • 5.6 - Borrow pit computations
  • 5.6.1 - Procedure
  • 5.6.2 - Summary
  • 5.7 - Short course on seismology
  • 5.7.1 - Introduction
  • 5.7.2 - Faults
  • 5.7.2.1 - Horizontal fault
  • 5.7.2.2 - Vertical fault (strike slip faults)
  • 5.7.2.3 - Active fault
  • 5.7.2.4 - Richter magnitude scale (M)
  • 5.7.3 - Peak ground acceleration
  • 5.7.4 - Seismic waves
  • 5.7.5 - Seismic wave velocities
  • 5.7.6 - Liquefaction
  • 5.7.6.1 - Theory
  • 5.7.7 - Impact due to earthquakes
  • 5.7.8 - Soil resistance to liquefaction
  • 5.7.8.1 - How to obtain (N1)60
  • 5.7.8.2 - Correction factor for magnitude
  • 5.7.8.3 - Correction factor for content of fines
  • References
  • Part 2- Shallow Foundations
  • 6 - Shallow foundation fundamentals
  • 6.1 - Introduction
  • 6.2 - Buildings
  • 6.2.1 - Buildings with basements
  • 6.3 - Bridges
  • 6.4 - Frost depth
  • 7 - capacity - rules of thumb
  • 7.1 - Introduction
  • 7.2 - Bearing capacity in medium to coarse sands (drained analysis)
  • 7.3 - Bearing capacity in fine sands
  • 8 - capacity computation (general equation for cohesive and noncohesive soils)
  • 8.1 - Terms used in Terzaghi's bearing capacity equation
  • 8.2 - Description of terms in the Terzaghi's bearing capacity equation
  • 8.3 - Terzaghi's bearing capacity equation (discussion)
  • 8.4 - Bearing capacity in sandy soil (drained analysis)
  • 8.5 - Bearing capacity in clay (undrained analysis)
  • 8.6 - Bearing capacity in layered soil
  • 8.7 - Bearing capacity when groundwater present
  • 8.8 - Groundwater below the stress triangle
  • 8.9 - Groundwater above the bottom of footing level
  • 8.10 - Groundwater at bottom of footing level
  • 8.11 - Meyerhof bearing capacity equation
  • 8.11.1 - Meyerhof equation for vertical loads
  • 8.11.2 - Meyerhof equation for inclined loads
  • 8.12 - Eccentric loading
  • 8.12.1 - Tension under footing due to eccentric loading
  • 8.13 - Shallow foundations in bridge abutments
  • 8.14 - Bearing capacity computations (Eurocode)
  • 8.14.1 - Drained equation for sands
  • 8.14.1.1 - Shape factors
  • 8.15 - Undrained conditions
  • 9 - Elastic settlement of shallow foundations
  • 9.1 - Introduction
  • Reference
  • 10 - Foundation reinforcement design
  • 10.1 - Concrete design (refresher)
  • 10.1.1 - Load factors
  • 10.1.2 - Strength reduction factors (f)
  • 10.1.3 - How to find the shear strength?
  • 10.2 - Design for beam flexure
  • 10.3 - Foundation reinforcement design
  • 10.3.1 - Design for punching shear
  • 10.3.2 - Punching shear zone
  • 10.3.3 - Design reinforcements for bending moment
  • 11 - Grillage design
  • 11.1 - Introduction
  • 12 - Footings subjected to bending moment
  • 12.1 - Introduction
  • 12.1.1 - Representation of bending moment with an eccentric load
  • 13 - Geogrids
  • 13.1 - Failure mechanisms
  • 14 - Tie beams and grade beams
  • 14.1 - Tie beams
  • 14.2 - Grade beams
  • 14.3 - Construction joints
  • 15 - Drainage for shallow foundations
  • 15.1 - Introduction
  • 15.2 - Dewatering methods
  • 15.2.1 - Well points
  • 15.2.2 - Small scale dewatering for column footings (pump water from the excavation)
  • 15.2.3 - Medium scale dewatering for basements or deep excavations (pump water from trenches or wells)
  • 15.2.4 - Large scale dewatering for basements or deep excavations
  • 15.2.4.1 - Alternative 1
  • 15.2.4.2 - Alternative 2
  • 15.3 - Design of dewatering systems
  • 15.3.1 - Initial study
  • 15.3.2 - Construct borings and piezometers
  • 15.4 - Ground freezing
  • 15.4.1 - Ground freezing technique
  • 15.4.2 - Ground freezing - practical aspects
  • 15.4.2.1 - Sands
  • 15.4.2.2 - Clays
  • 15.4.2.3 - Refrigeration plant size
  • 15.4.2.4 - Liquid nitrogen (LN2) versus brine
  • 15.4.2.5 - Groundwater flow velocity
  • 15.4.2.6 - Ground heave
  • 15.4.2.7 - Utilities
  • 15.4.2.8 - Groundwater control near streams and rivers
  • 15.4.2.9 - Groundwater control in tunneling
  • 15.4.2.10 - Contaminant isolation
  • 15.4.2.11 - Directional ground freezing
  • 15.4.2.12 - Ground freezing for underpinning
  • 15.5 - Drain pipes and filter design
  • 15.5.1 - Design of gravel filters
  • 15.5.2 - Purpose of gravel filters
  • 15.6 - Geotextile filter design
  • 15.6.1 - Geotextile wrapped granular drains (sandy surrounding soils)
  • 15.6.2 - Alternating flow in sandy soils
  • 15.6.3 - Geotextile wrapped granular drains (clayey surrounding soils)
  • 15.6.4 - Geotextile wrapped pipe drains
  • 15.6.5 - Summary
  • Reference
  • 16 - Selection of foundation type
  • 16.1 - Shallow foundations
  • 16.2 - Mat foundations
  • 16.3 - Pile foundations
  • 16.4 - Caissons
  • 16.5 - Foundation selection criteria
  • 17 - Consolidation settlement of foundations
  • 17.1 - Introduction
  • 17.1.1 - Secondary compression
  • 17.1.2 - Summary of concepts learned
  • 17.2 - Excess pore pressure distribution
  • 17.3 - Normally consolidated clays and overconsolidated clays
  • 17.4 - Total primary consolidation
  • 17.5 - Consolidation in overconsolidated clay
  • 17.6 - Computation of time for consolidation
  • 17.7 - Drainage layer (H)
  • 18 - Secondary compression
  • 19 - Seismic design of shallow foundations
  • 19.1 - Selection of ah value for a given city
  • Reference
  • Part 3 - Earth Retaining Structures
  • 20 - Earth retaining structures
  • 20.1 - Introduction
  • 20.2 - Water pressure distribution
  • 20.2.1 - Computation of horizontal pressure in soil
  • 20.3 - Active earth pressure coefficient (Ka)
  • 20.4 - Earth pressure coefficient at rest (K0)
  • 21 - Gravity walls: sand backfill
  • 21.1 - Introduction
  • 21.1.1 - Resistance against sliding failure
  • 21.1.2 - Resistance against overturning
  • 21.1.3 - Avoid tension in the base
  • 21.2 - Retaining wall design when groundwater is present
  • 21.3 - Retaining wall design in nonhomogeneous sands
  • 21.3.1 - General equation for gravity retaining walls
  • 21.3.2 - Lateral earth pressure coefficient for clayey soils (active condition)
  • 21.3.3 - Lateral earth pressure coefficient for clayey soils (passive condition)
  • 21.3.4 - Overturning moment is obtained by obtaining moments around point "X"
  • 21.3.5 - Earth pressure coefficients for cohesive backfills
  • 21.3.6 - Drainage using geotextiles
  • 21.3.7 - Consolidation of clayey soils
  • 21.3.8 - Avoiding tension in the base
  • 22 - Cantilever walls
  • 23 - Gabion walls
  • 23.1 - Introduction
  • 23.2 - Log retaining walls
  • 23.2.1 - Construction procedure of log walls
  • 24 - Reinforced earth walls
  • 25 - Structural design of retaining walls
  • Part 4 - Geotechnical Engineering Strategies
  • 26 - Geotechnical engineering software
  • 26.1 - Shallow foundations
  • 26.1.1 - SPT foundation
  • 26.1.2 - ABC bearing capacity computation
  • 26.1.3 - Settle 3D
  • 26.1.4 - Vdrain - consolidation settlement
  • 26.1.5 - Embank
  • 26.2 - Slope stability analysis
  • 26.2.1 - Reinforced soil slopes (RSS)
  • 26.2.2 - Mechanically stabilized earth walls (MSEW)
  • 26.3 - Bridge foundations
  • 26.3.1 - FB-MultiPier
  • 26.4 - Rock mechanics
  • 26.4.1 - Wedge failure analysis
  • 26.4.2 - Rock mass strength parameters
  • 26.5 - Pile design
  • 26.5.1 - Spile
  • 26.5.2 - Kalny
  • 26.6 - Lateral loading analysis - computer software
  • 26.6.1 - Lateral loading analysis using computer programs
  • 26.6.2 - Pile parameters
  • 26.6.3 - Soil parameters for sandy soils
  • 26.6.4 - Soil parameters for clayey soils
  • 26.7 - Finite element method
  • 26.7.1 - Representation of time history
  • 26.7.2 - Groundwater changes
  • 26.7.3 - Disadvantages
  • 26.7.4 - Finite element computer programs
  • 26.8 - Boundary element method
  • References
  • 27 - Geotechnical instrumentation
  • 27.1 - Inclinometer
  • 27.1.1 - In-place inclinometers
  • 27.1.2 - Procedure
  • 27.2 - Extensometers
  • 27.3 - Rock pressure gauge
  • 27.4 - Settlement plates
  • 27.5 - Borros anchors (settlement monitoring)
  • 27.6 - Tiltmeter
  • 27.6.1 - Procedure
  • 28 - Unbraced excavations
  • 28.1 - Introduction
  • 28.1.1 - Unbraced excavations in sandy soils (heights less than 15 ft.)
  • 28.1.2 - Unbraced excavations in cohesive soils (heights less than 15 ft.)
  • Reference
  • 29 - Braced excavations
  • 29.1 - Design of cross braces
  • 29.1.1 - Design of uprights
  • 29.1.2 - Aluminum hydraulic shoring
  • 30 - Raft design
  • 30.1 - Introduction
  • 30.2 - Raft design in sandy soils
  • 30.2.1 - Method proposed by Peck et al.
  • Reference
  • 31 - Rock mechanics and foundation design in rock
  • 31.1 - Introduction
  • 31.2 - Brief overview of rocks
  • 31.3 - Rock joints
  • 31.3.1 - Foundations on rock
  • 31.4 - Rock coring and logging
  • 31.4.1 - RQD (rock quality designation)
  • 31.4.2 - Joint filler materials
  • 31.4.3 - Core loss information
  • 31.5 - Rock mass classification
  • 31.6 - Q - System
  • 31.6.1 - Rock quality designation (RQD)
  • 31.6.2 - Joint set number (Jn)
  • 31.6.3 - Joint roughness number (Jr)
  • 31.6.4 - Joint alteration number (Ja)
  • 31.6.5 - Joint water reduction factor (Jw)
  • 31.6.5.1 - Stress reduction factor (SRF)
  • Reference
  • 32 - Dip angle and strike
  • 32.1 - Introduction
  • 32.2 - Oriented rock coring
  • 32.2.1 - Oriented coring procedure
  • 32.2.2 - Summary
  • 32.3 - Oriented core data
  • 32.3.1 - Concept of pole
  • 33 - Rock bolts, dowels, and cable bolts
  • 33.1 - Introduction
  • 33.1.1 - Applications
  • 33.2 - Mechanical rock anchors
  • 33.2.1 - Mechanical anchor failure
  • 33.2.2 - Design of mechanical anchors
  • 33.2.3 - Grouting methodology for mechanical rock anchors
  • 33.2.4 - Tube method
  • 33.2.5 - Hollow rock bolts
  • 33.3 - Resin anchored rock bolts
  • 33.3.1 - Disadvantages
  • 33.3.2 - Advantages
  • 33.4 - Rock dowels
  • 33.4.1 - Types of rock dowels
  • 33.4.1.1 - Cement-grouted dowels
  • 33.4.1.2 - Split-set stabilizers
  • 33.4.1.2.1 - Advantages and disadvantages
  • 33.4.1.3 - Swellex dowels
  • 33.5 - Grouted rock anchors (nonstressed)
  • 33.5.1 - Installation procedure of grouted anchors
  • 33.5.2 - Failure triangle for grouted rock anchors
  • 33.6 - Prestressed grouted rock anchors
  • 33.6.1 - Prestressing procedure
  • 33.6.2 - Advantages of prestressed anchors
  • 33.6.3 - Anchor-grout bond load in nonstressed anchors
  • 33.6.4 - Anchor-grout bond load in prestressed anchors
  • Reference
  • 34 - Soil anchors
  • 34.1 - Mechanical soil anchors
  • 34.2 - Grouted soil anchors
  • 35 - Tunnel design
  • 35.1 - Introduction
  • 35.2 - Roadheaders
  • 35.3 - Drill and blast
  • 35.4 - Tunnel design fundamentals
  • 35.4.1 - Literature survey
  • 35.4.2 - Subsurface investigation program for tunnels
  • 35.4.3 - Laboratory test program
  • 35.4.4 - Unconfined compressive strength test
  • 35.4.5 - Mineral identification
  • 35.4.6 - Petrographic analysis
  • 35.4.7 - Triaxial tests
  • 35.4.8 - Tensile strength test
  • 35.4.9 - Hardness tests
  • 35.4.10 - Consolidation tests
  • 35.4.11 - Swell tests
  • 35.5 - Tunnel support systems
  • 35.5.1 - Shotcrete
  • 35.5.2 - Dry mix shotcrete
  • 35.6 - Wedge analysis
  • 36 - Geosynthetics in geotechnical engineering
  • 37 - Slurry cutoff walls
  • 37.1 - Slurry cutoff wall types
  • 37.1.1 - Soil bentonite walls (SB walls)
  • 37.1.2 - Cement bentonite walls (CB walls)
  • 37.1.2.1 - Trench stability for slurry cutoff walls in sandy soils
  • 38 - Earthwork
  • 38.1 - Excavation and embankment (Cut and Fill)
  • 38.2 - Some relationships to remember
  • 38.3 - Borrow pit problems
  • 39 - Mass-haul diagrams
  • 39.1 - Cut
  • 39.2 - Mass-haul diagrams
  • 39.2.1 - Expansion
  • Part 5 - Pile Foundations
  • 40 - Pile foundations
  • 40.1 - Introduction
  • 40.2 - Pile types
  • 40.2.1 - Displacement piles
  • 40.2.1.1 - Large displacement piles
  • 40.2.1.2 - Small displacement piles
  • 40.2.2 - Nondisplacement piles
  • 40.3 - Timber piles
  • 40.3.1 - Timber pile decay - biological agents
  • 40.3.1.1 - Fungi
  • 40.3.1.2 - Marine borers
  • 40.3.2 - Preservation of timber piles
  • 40.3.3 - Shotcrete encasement of timber piles
  • 40.3.4 - Timber pile installation
  • 40.3.5 - Splicing of timber piles
  • 40.4 - Steel "H" piles
  • 40.4.1 - Splicing of "H" piles
  • 40.4.2 - Guidelines for splicing (International Building Code)
  • 40.5 - Pipe piles
  • 40.5.1 - Closed end pipe piles
  • 40.5.2 - Open End Pipe Piles
  • 40.5.3 - Ideal situations for open end pipe piles
  • 40.5.4 - Telescoping
  • 40.5.5 - Splicing of pipe piles
  • 40.6 - Precast-concrete piles
  • 40.7 - Reinforced concrete piles
  • 40.8 - Prestressed concrete piles
  • 40.8.1 - Pretensioning procedure
  • 40.8.2 - Posttensioning procedure
  • 40.8.3 - Reinforcements for precast-concrete piles (IBC)
  • 40.8.4 - Concrete strength (IBC)
  • 40.8.5 - Hollow tubular section concrete piles
  • 40.9 - Driven cast-in-place concrete piles
  • 40.10 - Selection of pile type
  • 41 - Pile design in sandy soils
  • 41.1 - Equations for end bearing capacity in sandy soils
  • 41.1.1 - API method: (American petroleum institute, 1984)
  • 41.1.2 - Martin et al. (1987)
  • 41.1.3 - NAVFAC DM 7.2
  • 41.1.4 - Bearing capacity factor (Nq)
  • 41.2 - Equations for skin friction in sandy soils
  • 41.2.1 - Pile skin friction angle (d)
  • 41.2.2 - Lateral earth pressure coefficient (K)
  • 41.2.2.1 - Average "K" method
  • 41.2.3 - Pile design using Meyerhoff equation: correlation with SPT (N)
  • 41.2.3.1 - End bearing capacity
  • 41.2.3.2 - Modified Meyerhoff equation
  • 41.3 - Critical depth for skin friction (sandy soils)
  • 41.3.1 - Experimental evidence for critical depth
  • 41.3.2 - Reasons for limiting skin friction
  • 41.4 - Critical depth for end bearing capacity (sandy soils)
  • 41.4.1 - Critical depth example
  • References
  • 42 - Pile design in clay soils
  • 42.1 - End bearing capacity in clay soils (different methods)
  • 42.1.1 - Driven piles
  • 42.1.2 - Bored piles
  • 42.1.3 - Driven Piles
  • 42.1.4 - Bored piles
  • 42.2 - Case study - foundation design options
  • References
  • 43 - Pile installation and verification
  • 43.1 - Straightness of the pile
  • 43.2 - Damage to the pile
  • 43.3 - Plumbness of piles
  • 44 - Design of pin piles - semiempirical approach
  • 44.1 - Theory
  • 44.1.1 - Construction of a pin pile
  • 44.2 - Concepts to Consider
  • 44.2.1 - Design of pin piles in sandy soils
  • References
  • 45 - Neutral plane concept and negative skin friction
  • 45.1 - Introduction
  • 45.1.1 - Soil and pile movement: above the neutral plane
  • 45.1.2 - Soil and pile movement: below the neutral plane
  • 45.1.3 - Soil and pile movement: at neutral plane
  • 45.1.4 - Location of the neutral plane
  • 45.2 - Negative skin friction
  • 45.3 - Bitumen coated pile installation
  • 45.3.1 - How bitumen coating would work against downdrag
  • 45.3.1.1 - Typical situation
  • 46 - Design of caissons
  • 46.1 - Brief history of caissons
  • 46.2 - Machine digging
  • 46.3 - Caisson design in clay soil
  • 46.3.1 - Different methods
  • 46.4 - Meyerhoff's equation for caissons
  • 46.4.1 - Modified Meyerhoff equation
  • 46.5 - Belled caisson design
  • 46.6 - Caisson design in rock
  • 46.6.1 - Caissons under compression
  • Reference
  • 47 - Design of pile groups
  • 47.1 - Soil disturbance during driving
  • 47.2 - Soil compaction in sandy soil
  • 47.3 - Pile bending
  • 47.4 - End bearing piles
  • 47.4.1 - AASHTO (1992) guidelines
  • Reference
  • Subject Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

93,95 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok