Definition and basic properties of linear spaces.- Lower bounds for the number of lines.- Basic properties and results of (n+1,1)-designs.- Points of degree n.- Linear spaces with few lines.- Embedding (n+1,1)-designs into projective planes.- An optimal bound for embedding linear spaces into projective planes.- The theorem of totten.- Linear spaces with n2+n+1 points.- A hypothetical structure.- Linear spaces with n2+n+2 lines.- Points of degree n and another characterization of the linear spaces L(n,d).- The non-existence of certain (7,1)-designs and determination of A(5) and A(6).- A result on graph theory with an application to linear spaces.- Linear spaces in which every long line meets only few lines.- s-fold inflated projective planes.- The Dowling Wilson Conjecture.- Uniqueness of embeddings.