I. Complete Minimal Surfaces in Rn.- §1. Intrinsic Surface Theory.- §2 Immersed Surfaces in Euclidean Space.- §3. Minimal Surfaces and the Gauss Map.- §4. Algebraic Gauss Maps.- §5. Examples.- §6. Minimal Immersions of Punctured Compact Riemann Surfaces.- §7. The Bernstein-Osserman Theorem.- II. Compact Minimal Surfaces in Sn.- §1. Moving Frames.- §2. Minimal Two-Spheres in Sn.- §3. The Twistor Fibration.- §4. Minimal Surfaces in ?P1.- §5. Examples.- III. Holomorphic Curves and Minimal Surfaces in CPn.- §1. Hermitian Geometry and Singular Metrics on a Riemann Surface.- §2. Holomorphic Curves in ?Pn.- §3. Minimal Surfaces in a Kahler Manifold.- §4. Minimal Surfaces Associated to a Holomorphic Curve.- IV. Holomorphic Curves and Minimal Surfaces in the Quadric.- §1 Immersed Holomorphic Curves in the Two-Quadric.- §2. Holomorphic Curves in Q2.- §3. Horizontal Holomorphic Curves in SO(m)-Flag Manifolds.- §4. Associated Minimal Surfaces.- §5 Minimal Surfaces in the Quaternionic Projective Space.- V. The Twistor Method.- §1. The Hermitian Symmetric Space SO(2n)/U(m).- §2. The Orthogonal Twistor Bundle.- §3. Applications: Isotropic Surfaces and Minimal Surfaces.- §4. Self-Duality in Riemannian Four-Manifolds.