
Linear Systems Theory
Beschreibung
Weitere Details
Weitere Ausgaben
Person
Inhalt
- Cover
- Title
- Copyright
- Dedication
- CONTENTS
- PREAMBLE
- LINEAR SYSTEMS I - BASIC CONCEPTS
- I SYSTEM REPRESENTATION
- 1 STATE-SPACE LINEAR SYSTEMS
- 1.1 State-Space Linear Systems
- 1.2 Block Diagrams
- 1.3 Exercises
- 2 LINEARIZATION
- 2.1 State-Space Nonlinear Systems
- 2.2 Local Linearization Around an Equilibrium Point
- 2.3 Local Linearization Around a Trajectory
- 2.4 Feedback Linearization
- 2.5 Practice Exercises
- 2.6 Exercises
- 3 CAUSALITY, TIME INVARIANCE, AND LINEARITY
- 3.1 Basic Properties of LTV/LTI Systems
- 3.2 Characterization of All Outputs to a Given Input
- 3.3 Impulse Response
- 3.4 Laplace and ? Transforms (Review)
- 3.5 Transfer Function
- 3.6 Discrete-Time Case
- 3.7 Additional Notes
- 3.8 Exercises
- 4 IMPULSE RESPONSE AND TRANSFER FUNCTION OF STATE-SPACE SYSTEMS
- 4.1 Impulse Response and Transfer Function for LTI Systems
- 4.2 Discrete-Time Case
- 4.3 Elementary Realization Theory
- 4.4 Equivalent State-Space Systems
- 4.5 LTI Systems in MATLAB®
- 4.6 Practice Exercises
- 4.7 Exercises
- 5 SOLUTIONS TO LTV SYSTEMS
- 5.1 Solution to Homogeneous Linear Systems
- 5.2 Solution to Nonhomogeneous Linear Systems
- 5.3 Discrete-Time Case
- 5.4 Practice Exercises
- 5.5 Exercises
- 6 SOLUTIONS TO LTI SYSTEMS
- 6.1 Matrix Exponential
- 6.2 Properties of the Matrix Exponential
- 6.3 Computation of Matrix Exponentials Using Laplace Transforms
- 6.4 The Importance of the Characteristic Polynomial
- 6.5 Discrete-Time Case
- 6.6 Symbolic Computations in MATLAB®
- 6.7 Practice Exercises
- 6.8 Exercises
- 7 SOLUTIONS TO LTI SYSTEMS: THE JORDAN NORMAL FORM
- 7.1 Jordan Normal Form
- 7.2 Computation of Matrix Powers using the Jordan Normal Form
- 7.3 Computation of Matrix Exponentials using the Jordan Normal Form
- 7.4 Eigenvalues with Multiplicity Larger than 1
- 7.5 Practice Exercise
- 7.6 Exercises
- II STABILITY
- 8 INTERNAL OR LYAPUNOV STABILITY
- 8.1 Lyapunov Stability
- 8.2 Vector and Matrix Norms (Review)
- 8.3 Eigenvalue Conditions for Lyapunov Stability
- 8.4 Positive-Definite Matrices (Review)
- 8.5 Lyapunov Stability Theorem
- 8.6 Discrete-Time Case
- 8.7 Stability of Locally Linearized Systems
- 8.8 Stability Tests with MATLAB®
- 8.9 Practice Exercises
- 8.10 Exercises
- 9 INPUT-OUTPUT STABILITY
- 9.1 Bounded-Input, Bounded-Output Stability
- 9.2 Time Domain Conditions for BIBO Stability
- 9.3 Frequency Domain Conditions for BIBO Stability
- 9.4 BIBO versus Lyapunov Stability
- 9.5 Discrete-Time Case
- 9.6 Practice Exercises
- 9.7 Exercises
- 10 PREVIEW OF OPTIMAL CONTROL
- 10.1 The Linear Quadratic Regulator Problem
- 10.2 Feedback Invariants
- 10.3 Feedback Invariants in Optimal Control
- 10.4 Optimal State Feedback
- 10.5 LQR with MATLAB®
- 10.6 Practice Exercise
- 10.7 Exercise
- III CONTROLLABILITY AND STATE FEEDBACK
- 11 CONTROLLABLE AND REACHABLE SUBSPACES
- 11.1 Controllable and Reachable Subspaces
- 11.2 Physical Examples and System Interconnections
- 11.3 Fundamental Theorem of Linear Equations (Review)
- 11.4 Reachability and Controllability Gramians
- 11.5 Open-Loop Minimum-Energy Control
- 11.6 Controllability Matrix (LTI)
- 11.7 Discrete-Time Case
- 11.8 MATLAB® Commands
- 11.9 Practice Exercise
- 11.10 Exercises
- 12 CONTROLLABLE SYSTEMS
- 12.1 Controllable Systems
- 12.2 Eigenvector Test for Controllability
- 12.3 Lyapunov Test for Controllability
- 12.4 Feedback Stabilization Based on the Lyapunov Test
- 12.5 Eigenvalue Assignment
- 12.6 Practice Exercises
- 12.7 Exercises
- 13 CONTROLLABLE DECOMPOSITIONS
- 13.1 Invariance with Respect to Similarity Transformations
- 13.2 Controllable Decomposition
- 13.3 Block Diagram Interpretation
- 13.4 Transfer Function
- 13.5 MATLAB® Commands
- 13.6 Exercise
- 14 STABILIZABILITY
- 14.1 Stabilizable System
- 14.2 Eigenvector Test for Stabilizability
- 14.3 Popov-Belevitch-Hautus (PBH) Test for Stabilizability
- 14.4 Lyapunov Test for Stabilizability
- 14.5 Feedback Stabilization Based on the Lyapunov Test
- 14.6 MATLAB® Commands
- 14.7 Exercises
- IV OBSERVABILITY AND OUTPUT FEEDBACK
- 15 OBSERVABILITY
- 15.1 Motivation: Output Feedback
- 15.2 Unobservable Subspace
- 15.3 Unconstructible Subspace
- 15.4 Physical Examples
- 15.5 Observability and Constructibility Gramians
- 15.6 Gramian-Based Reconstruction
- 15.7 Discrete-Time Case
- 15.8 Duality for LTI Systems
- 15.9 Observability Tests
- 15.10 MATLAB® Commands
- 15.11 Practice Exercises
- 15.12 Exercises
- 16 OUTPUT FEEDBACK
- 16.1 Observable Decomposition
- 16.2 Kalman Decomposition Theorem
- 16.3 Detectability
- 16.4 Detectability Tests
- 16.5 State Estimation
- 16.6 Eigenvalue Assignment by Output Injection
- 16.7 Stabilization through Output Feedback
- 16.8 MATLAB® Commands
- 16.9 Exercises
- 17 MINIMAL REALIZATIONS
- 17.1 Minimal Realizations
- 17.2 Markov Parameters
- 17.3 Similarity of Minimal Realizations
- 17.4 Order of a Minimal SISO Realization
- 17.5 MATLAB® Commands
- 17.6 Practice Exercises
- 17.7 Exercises
- LINEAR SYSTEMS II - ADVANCED MATERIAL
- V POLES AND ZEROS OF MIMO SYSTEMS
- 18 SMITH-MCMILLAN FORM
- 18.1 Informal Definition of Poles and Zeros
- 18.2 Polynomial Matrices: Smith Form
- 18.3 Rational Matrices: Smith-McMillan Form
- 18.4 McMillan Degree, Poles, and Zeros
- 18.5 Blocking Property of Transmission Zeros
- 18.6 MATLAB® Commands
- 18.7 Exercises
- 19 STATE-SPACE POLES, ZEROS, AND MINIMALITY
- 19.1 Poles of Transfer Functions versus Eigenvalues of State-Space Realizations
- 19.2 Transmission Zeros of Transfer Functions versus Invariant Zeros of State-Space Realizations
- 19.3 Order of Minimal Realizations
- 19.4 Practice Exercises
- 19.5 Exercise
- 20 SYSTEM INVERSES
- 20.1 System Inverse
- 20.2 Existence of an Inverse
- 20.3 Poles and Zeros of an Inverse
- 20.4 Feedback Control of Invertible Stable Systems with Stable Inverses
- 20.5 MATLAB® Commands
- 20.6 Exercises
- VI LQR/LQG OPTIMAL CONTROL
- 21 LINEAR QUADRATIC REGULATION (LQR)
- 21.1 Deterministic Linear Quadratic Regulation (LQR)
- 21.2 Optimal Regulation
- 21.3 Feedback Invariants
- 21.4 Feedback Invariants in Optimal Control
- 21.5 Optimal State Feedback
- 21.6 LQR in MATLAB®
- 21.7 Additional Notes
- 21.8 Exercises
- 22 THE ALGEBRAIC RICCATI EQUATION (ARE)
- 22.1 The Hamiltonian Matrix
- 22.2 Domain of the Riccati Operator
- 22.3 Stable Subspaces
- 22.4 Stable Subspace of the Hamiltonian Matrix
- 22.5 Exercises
- 23 FREQUENCY DOMAIN AND ASYMPTOTIC PROPERTIES OF LQR
- 23.1 Kalman's Equality
- 23.2 Frequency Domain Properties: Single-Input Case
- 23.3 Loop Shaping Using LQR: Single-Input Case
- 23.4 LQR Design Example
- 23.5 Cheap Control Case
- 23.6 MATLAB® Commands
- 23.7 Additional Notes
- 23.8 The Loop-Shaping Design Method (Review)
- 23.9 Exercises
- 24 OUTPUT FEEDBACK
- 24.1 Certainty Equivalence
- 24.2 Deterministic Minimum-Energy Estimation (MEE)
- 24.3 Stochastic Linear Quadratic Gaussian (LQG) Estimation
- 24.4 LQR/LQG Output Feedback
- 24.5 Loop Transfer Recovery (LTR)
- 24.6 Optimal Set-Point Control
- 24.7 LQR/LQG with MATLAB®
- 24.8 LTR Design Example
- 24.9 Exercises
- 25 LQG/LQR AND THE Q PARAMETERIZATION
- 25.1 Q-Augmented LQG/LQR Controller
- 25.2 Properties
- 25.3 Q Parameterization
- 25.4 Exercise
- 26 Q DESIGN
- 26.1 Control Specifications for Q Design
- 26.2 The Q Design Feasibility Problem
- 26.3 Finite-Dimensional Optimization: Ritz Approximation
- 26.4 Q Design Using MATLAB® and CVX
- 26.5 Q Design Example
- 26.6 Exercise
- BIBLIOGRAPHY
- INDEX
Systemvoraussetzungen
Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
- Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).
- Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
- E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m.
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.