Digital Terrain Analysis in Soil Science and Geology

 
 
Academic Press
  • 2. Auflage
  • |
  • erschienen am 11. Juli 2016
  • |
  • 506 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-804633-3 (ISBN)
 

Digital Terrain Analysis in Soil Science and Geology, Second Edition, synthesizes the knowledge on methods and applications of digital terrain analysis and geomorphometry in the context of multi-scale problems in soil science and geology. Divided into three parts, the book first examines main concepts, principles, and methods of digital terrain modeling. It then looks at methods for analysis, modeling, and mapping of spatial distribution of soil properties using digital terrain analysis, before finally considering techniques for recognition, analysis, and interpretation of topographically manifested geological features. Digital Terrain Analysis in Soil Science and Geology, Second Edition, is an updated and revised edition, providing both a theoretical and methodological basis for understanding and applying geographical modeling techniques.


  • Presents an integrated and unified view of digital terrain analysis in both soil science and geology
  • Features research on new advances in the field, including DEM analytical approximation, analytical calculation of local morphometric variables, morphometric globes, and two-dimensional generalized spectral analytical methods
  • Includes a rigorous description of the mathematical principles of digital terrain analysis
  • Provides both a theoretical and methodological basis for understanding and applying geographical modeling


Igor Florinsky is a Principal Research Scientist at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences. He has previously held positions as a Visiting Fellow at the Agriculture and Agri-Food Canada and a Research Scientist at the University of Manitoba in Canada. He is an author, co-author, or editor of over 125 publications including 2 books, 2 edited volumes, 50 papers in peer-reviewed journals, and 13 peer-reviewed book chapters. He is an Editorial Board Member for the journals Chinese Geographical Science, Space and Time, and the International Journal of Ecology and Development. His research interests include digital terrain modeling and geomorphometry, interrelationships between topography, soils, and tectonics, and the influence of the geological environment on humans, society and civilization.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 43,37 MB
978-0-12-804633-3 (9780128046333)
0128046333 (0128046333)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Digital Terrain Analysis in Soil Science and Geology
  • Copyright
  • Contents
  • Preface to the Second Edition
  • Acknowledgments
  • Abbreviations and Acronyms
  • Chapter 1: Digital Terrain Modeling: A Brief Historical Overview
  • Part I: Principles and Methods of Digital Terrain Modeling
  • Chapter 2: Topographic Surface and Its Characterization
  • 2.1. Topographic Surface
  • 2.1.1. Definition and Limitations
  • 2.1.2. Contour Lines and Special Points
  • 2.1.3. Morphometric Variable and Its Types
  • 2.2. Local Morphometric Variables
  • 2.2.1. Overview
  • 2.2.2. Gradient
  • 2.2.2.1. Slope Lines and Flow Lines
  • 2.2.3. Aspect
  • 2.2.4. Curvatures
  • 2.2.4.1. Plan Curvature
  • 2.2.4.2. Horizontal Curvature
  • 2.2.4.3. Vertical Curvature
  • 2.2.4.4. Mean Curvature
  • 2.2.4.5. Principal Curvatures
  • 2.2.4.6. Gaussian Curvature
  • 2.2.4.7. Unsphericity Curvature
  • 2.2.4.8. Rotor
  • 2.2.4.9. Difference Curvature
  • 2.2.4.10. Horizontal and Vertical Excess Curvatures
  • 2.2.4.11. Ring Curvature
  • 2.2.4.12. Accumulation Curvature
  • 2.2.4.13. Laplacian
  • 2.2.5. Generating Function
  • 2.3. Nonlocal Morphometric Variables
  • 2.4. Structural Lines
  • 2.5. Solar Morphometric Variables
  • 2.5.1. Reflectance
  • 2.5.2. Insolation
  • 2.6. Combined Morphometric Variables
  • 2.7. Landform Classifications
  • 2.7.1. Gaussian Classification
  • 2.7.2. The Concept of Accumulation Zones. The Efremov-Krcho Classification
  • 2.7.3. The Shary Classification
  • Chapter 3: Digital Elevation Models
  • 3.1. DEM Generation
  • 3.1.1. Conventional Topographic Surveys
  • 3.1.2. Kinematic GNSS Surveys
  • 3.1.3. Stereophotogrammetry
  • 3.1.4. Structure-From-Motion Techniques
  • 3.1.5. Laser Altimetry
  • 3.1.6. SAR Techniques
  • 3.1.7. Echo Sounding
  • 3.1.8. Satellite Radar Altimetry
  • 3.1.9. Airborne Optical Sensing of Bathymetry
  • 3.1.10. Soil and Geological Core Drilling
  • 3.1.11. Three-Dimensional Seismic Survey
  • 3.1.12. Ice Penetrating Radio-Echo Sounding
  • 3.1.13. Digitizing of Contours
  • 3.1.14. Fusion of Data From Different Sources
  • 3.2. DEM Grids
  • 3.2.1. Plane Grids
  • 3.2.2. Spheroidal Grids
  • 3.2.3. Datums and Coordinate Systems
  • 3.3. DEM Resolution
  • 3.4. DEM Interpolation
  • 3.4.1. General
  • 3.4.2. Some Methods
  • Chapter 4: Calculation Methods
  • 4.1. The Evans-Young Method
  • 4.2. Calculation of Local Morphometric Variables on a Plane Square Grid
  • 4.2.1. Motivation
  • 4.2.2. Formulae
  • 4.2.3. Method Validation
  • 4.2.3.1. Materials and Data Processing
  • 4.2.3.2. Results and Discussion
  • 4.3. Calculation of Local Morphometric Variables on a Spheroidal Equal Angular Grid
  • 4.3.1. Motivation
  • 4.3.2. Formulae
  • 4.3.3. Calculation of Linear Sizes of a Spheroidal Equal Angular Window
  • 4.3.4. Discussion
  • 4.4. Calculation of Nonlocal Morphometric Variables
  • 4.4.1. Operation on a Plane Square Grid
  • 4.4.2. Operation on a Spheroidal Equal Angular Grid
  • 4.5. Calculation of Structural Lines
  • 4.5.1. Conventional Algorithms
  • 4.5.2. Generating Function
  • 4.6. Calculation of Solar Morphometric Variables
  • 4.7. Calculation of Combined Morphometric Variables
  • Chapter 5: Errors and Accuracy
  • 5.1. Sources of DEM Errors
  • 5.2. Estimation of DEM Accuracy
  • 5.3. Calculation Accuracy of Local Morphometric Variables
  • 5.3.1. Motivation
  • 5.3.2. RMSE Formulae for Local Morphometric Variables
  • 5.3.3. RMSE Formulae for the Partial Derivatives
  • 5.3.3.1. Calculation on the Plane Square Grid
  • 5.3.3.2. Calculation on the Spheroidal Equal Angular Grid
  • 5.3.4. RMSE Mapping
  • 5.4. Ignoring of the Sampling Theorem
  • 5.4.1. Motivation
  • 5.4.2. Materials and Data Processing
  • 5.4.3. Results and Discussion
  • 5.5. The Gibbs Phenomenon
  • 5.5.1. Motivation
  • 5.5.2. Materials and Data Processing
  • 5.5.3. Results and Discussion
  • 5.6. Grid Displacement
  • 5.6.1. Motivation
  • 5.6.2. Materials and Data Processing
  • 5.6.3. Results and Discussion
  • 5.7. Linear Artifacts
  • 5.7.1. Motivation
  • 5.7.2. Isotropy of Local Morphometric Variables
  • Chapter 6: Filtering
  • 6.1. Tasks of DTM Filtering
  • 6.1.1. Decomposition of the Topographic Surface
  • 6.1.2. Denoising
  • 6.1.3. Generalization
  • 6.1.3.1. Generalization in Cartography
  • 6.1.3.2. DTM Generalization
  • 6.2. Methods of DTM Filtering
  • 6.2.1. Trend-Surface Analysis
  • 6.2.2. The Filosofov Method
  • 6.2.3. Two-Dimensional Discrete Fourier Transform
  • 6.2.4. Two-Dimensional Discrete Wavelet Transform
  • 6.2.5. Smoothing
  • 6.2.6. Row and Column Elimination
  • 6.2.7. The Cutting Method
  • 6.3. Two-Dimensional Singular Spectrum Analysis
  • 6.3.1. Formulae
  • 6.3.2. Materials and Data Processing
  • 6.3.3. Results and Discussion
  • Chapter 7: Universal Analytical Modeling
  • 7.1. Motivation
  • 7.2. Method
  • 7.2.1. Stage 1: Calculation of Expansion Coefficients
  • 7.2.2. Stage 2: The Fejér Summation
  • 7.2.3. Stage 3: Reconstruction of the Approximated Function
  • 7.2.4. Stage 4: Calculation of Derivatives
  • 7.3. Algorithm
  • 7.4. Materials and Data Processing
  • 7.5. Results and Discussion
  • Chapter 8: Mapping and Visualization
  • 8.1. Peculiarities of Morphometric Mapping
  • 8.2. Combined Visualization of Morphometric Variables
  • 8.3. Cross Sections
  • 8.4. Three-Dimensional Topographic Modeling
  • 8.5. Combining Hill-Shaded Maps With Soil and Geological Data
  • 8.6. Virtual Globes
  • Part II: Digital Terrain Modeling in Soil Science
  • Chapter 9: Influence of Topography on Soil Properties
  • 9.1. Introduction
  • 9.2. Local Morphometric Variables and Soil
  • 9.3. Nonlocal Morphometric Variables and Soil
  • 9.4. Discussion
  • Chapter 10: Adequate Resolution of Models
  • 10.1. Motivation
  • 10.2. Theory
  • 10.3. Field Study
  • 10.3.1. Study Site
  • 10.3.2. Materials and Methods
  • 10.3.3. Results and Discussion
  • Chapter 11: Predictive Soil Mapping
  • 11.1. The Dokuchaev Hypothesis as a Central Idea of Soil Predictions
  • 11.2. Early Models
  • 11.3. Current Predictive Methods
  • 11.3.1. Classification of Methods
  • 11.3.2. Mathematical Approaches
  • 11.3.3. Small-Scale Predictive Models and Upscaling
  • 11.3.4. Prediction Accuracy
  • 11.4. Topographic Multivariable Approach
  • Chapter 12: Analyzing Relationships in the ``Topography-Soil´´ System
  • 12.1. Motivation
  • 12.2. Study Sites
  • 12.3. Materials and Methods
  • 12.3.1. Field Work
  • 12.3.2. Laboratory Analyses
  • 12.3.3. Data Processing
  • 12.3.3.1. Topographic Modeling
  • 12.3.3.2. Statistical Analysis
  • 12.4. Results and Discussion
  • 12.4.1. Variability in Relationships Between Soil and Morphometric Variables
  • 12.4.1.1. Temporal Variability
  • 12.4.1.2. Depth Variability
  • 12.4.2. Topography and Denitrification
  • 12.4.2.1. Wetter Conditions
  • 12.4.2.2. Drier Conditions
  • 12.4.2.3. Interpretations
  • Part III: Digital Terrain Modeling in Geology
  • Chapter 13: Folds and Folding
  • 13.1. Introduction
  • 13.2. Fold Geometry and Fold Classification
  • 13.3. Predicting the Degree of Fold Deformation and Fracturing
  • 13.4. Folding Models and the Theorema Egregium
  • Chapter 14: Lineaments and Faults
  • 14.1. Motivation
  • 14.2. Theory
  • 14.3. Method Validation
  • 14.3.1. Materials and Data Processing
  • 14.3.2. Results and Discussion
  • 14.3.3. Strike, Dip, and Displacement Estimation
  • 14.4. Two Case Studies
  • 14.4.1. The Crimean Peninsula
  • 14.4.1.1. The Geological Setting
  • 14.4.1.2. Materials and Data Processing
  • 14.4.1.3. Results and Discussion
  • 14.4.2. The KNPP Area
  • 14.4.2.1. The Geological Setting
  • 14.4.2.2. Materials and Data Processing
  • 14.4.2.3. Results and Discussion
  • Chapter 15: Accumulation Zones and Fault Intersections
  • 15.1. Motivation
  • 15.2. Study Area
  • 15.3. Materials and Methods
  • 15.4. Results and Discussion
  • Chapter 16: Global Topography and Tectonic Structures
  • 16.1. Motivation
  • 16.2. Materials and Data Processing
  • 16.3. Results and Discussion
  • 16.3.1. General Interpretation
  • 16.3.2. Global Helical Structures
  • Chapter 17: Concluding Remarks
  • Appendix A: LandLord-A Brief Description of the Software
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

148,75 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok