Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
In mathematics, a classical random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. Quantum walks are the quantum equivalent of the classical. Most quantum walk models are defined on graphs, which is a discrete structure, and the time-evolution can be discrete or continuous. The question that arises is how can quantum walks be used to model the usual quantum mechanical equations? This book lithely deals with this problem.
This book provides an overview of quantum walks, limits, and transport equations. After an introduction to quantum computing, quantum simulation, and then symmetries, it then narrows down to describe quantum transport and quantum walks. It provides a review of the basics of quantum mechanics and the underlying mathematical framework. The fundamentals of quantum walks are described, followed by an overview of plastic quantum walks including limits, analysis, and interpretation of results.
Giuseppe Di Molfetta is an assistant professor at Aix-Marseille University, in the Natural Computing group at the Computer Science Lab, LIS. His research focuses on Quantum Walks-based architectures and Quantum Cellular Automata, with a special emphasis on quantum simulation of physical theories, quantum algorithms and discrete geometry. He has national (Marseille, Paris, Grenoble) and international collaborations (Brazil, Japan, Germany, UK), resulting in already 34 publications in high-impact international journals (eg. Physical Review Letters, Quantum, Quantum Information Processing, Scientific Reports,...).
Preface
Acknowledgements
Author Biography
1 Introduction
2 Elements of quantum theory
3 Fundamentals of Quantum Walks
4 Continuous limits and plasticity in one dimension
5 Plasticity in 2D, transport equations and beyond
6 Quantum walking over triangles
7 Simulating transport on curved surfaces
8 Conclusion
Dateiformat: ePUBKopierschutz: ohne DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „glatten” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.
Weitere Informationen finden Sie in unserer E-Book Hilfe.