Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Our objective in writing this book was to provide the reader with an in-depth knowledge of how to integrate machine learning (ML) approaches to meet various analytical issues in cloud security deemed necessary due to the advancement of IoT networks. Although one of the ways to achieve cloud security is by using ML, the technique has long-standing challenges that require methodological and theoretical approaches. Therefore, because the conventional cryptographic approach is less frequently applied in resource-constrained devices, the ML approach may be effectively used in providing security in the constantly growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues for effective intrusion detection and zero-knowledge authentication systems. Moreover, these algorithms can also be used in applications and for much more, including measuring passive attacks and designing protocols and privacy systems. This book contains case studies/projects for implementing some security features based on ML algorithms and analytics. It will provide learning paradigms for the field of artificial intelligence and the deep learning community, with related datasets to help delve deeper into ML for cloud security.
This book is organized into five parts. As the entire book is based on ML techniques, the three chapters contained in "Part I: Conceptual Aspects of Cloud and Applications of Machine Learning," describe cloud environments and ML methods and techniques. The seven chapters in "Part II: Cloud Security Systems Using Machine Learning Techniques," describe ML algorithms and techniques which are hard coded and implemented for providing various security aspects of cloud environments. The four chapters of "Part III: Cloud Security Analysis Using Machine Learning Techniques," present some of the recent studies and surveys of ML techniques and analytics for providing cloud security. The next three chapters in "Part IV: Case Studies Focused on Cloud Security," are unique to this book as they contain three case studies of three cloud products from a security perspective. These three products are mainly in the domains of public cloud, private cloud and hybrid cloud. Finally, the two chapters in "Part V: Policy Aspects," pertain to policy aspects related to the cloud environment and cloud security using ML techniques and analytics. Each of the chapters mentioned above are individually highlighted chapter by chapter below.
Part I: Conceptual Aspects of Cloud and Applications of Machine Learning
Part II: Cloud Security Systems Using Machine Learning Techniques
Part III: Cloud Security Analysis Using Machine Learning Techniques
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.