Representations of rank one lie algebras of characteristic p.- The classification problem for simple lie algebras of characteristic p.- Normalizer towers in semisimple Lie algebras.- A classification of pointed An-modules.- Representations of affine lie algebras, hecke modular forms and korteweg¿De vries type equations.- A note on the centers of lie algebras of classical type.- Some problems on infinite dimensional lie algebras and their representations.- Some simple Lie algebras of characteristic 2.- Affine Lie algebras and combinatorial identities.- An embedding of PSL(2,13) in ? 0.- Affine lie algebras and theta-functions.- Resolutions of irreducible highest weight modules over infinite dimensional graded lie algebras.- Representations of lie p-algebras.- Noncocommutative sequences of divided powers.- Eclidean lie algebras are universal central extensions.- The fitting and jordan structure of affine semigroups.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 14 mm
Gewicht
ISBN-13
978-3-540-11563-2 (9783540115632)
DOI
Schweitzer Klassifikation
Representations of rank one lie algebras of characteristic p.- The classification problem for simple lie algebras of characteristic p.- Normalizer towers in semisimple Lie algebras.- A classification of pointed An-modules.- Representations of affine lie algebras, hecke modular forms and korteweg-De vries type equations.- A note on the centers of lie algebras of classical type.- Some problems on infinite dimensional lie algebras and their representations.- Some simple Lie algebras of characteristic 2.- Affine Lie algebras and combinatorial identities.- An embedding of PSL(2,13) in ? 0.- Affine lie algebras and theta-functions.- Resolutions of irreducible highest weight modules over infinite dimensional graded lie algebras.- Representations of lie p-algebras.- Noncocommutative sequences of divided powers.- Eclidean lie algebras are universal central extensions.- The fitting and jordan structure of affine semigroups.