Flexibly designed for CS students needing math review. Also covers some advanced, cutting edge topics (running 120 pages and intended for grad students) in the last chapter (8). This text fits senior year or intro. grad course for CS and math majors.
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Maße
Höhe: 235 mm
Breite: 158 mm
Dicke: 28 mm
Gewicht
ISBN-13
978-0-13-227828-7 (9780132278287)
Copyright in bibliographic data is held by Nielsen Book Services Limited or its licensors: all rights reserved.
Schweitzer Klassifikation
1. Fundamental Concepts. Definitions and examples. Paths and proofs. Vertex degrees and counting. Degrees and algorithmic proof. 2. Trees and Distance. Basic properties. Spanning trees and enumeration. Optimization and trees. Eulerian graphs and digraphs. 3. Matchings and Factors. Matchings in bipartite graphs. Applications and algorithms. Matchings in general graphs. 4. Connectivity and Paths. Cuts and connectivity. k-connected graphs. Network flow problems. 5. Graph Coloring. Vertex colorings and upper bounds. Structure of k-chromatic graphs. Enumerative aspects. 6. Edges and Cycles. Line graphs and edge-coloring. Hamiltonian cycles. Complexity. 7. Planar Graphs. Embeddings and Eulers formula. Characterization of planar graphs. Parameters of planarity. 8. Additional Topics. Perfect graphs. Matroids. Ramsey theory. More extremal problems. Random graphs. Eigenvalues of graphs. Glossary of Terms. Glossary of Notation. References. Author Index. Subject Index.