"Singular Loci of Schubert Varieties" is a unique work at the crossroads of representation theory, algebraic geometry, and combinatorics. Over the past 20 years, many research articles have been written on the subject in notable journals. In this work, Billey and Lakshmibai have recreated and restructured the various theories and approaches of those articles and present a clearer understanding of this important subdiscipline of Schubert varieties - namely singular loci. The main focus, therefore, is on the computations for the singular loci of Schubert varieties and corresponding tangent spaces. The methods used include standard monomial theory, the nil Hecke ring, and Kazhdan-Lusztig theory. New results are presented with sufficient examples to emphasize key points. A comprehensive bibliography, index, and tables - the latter not to be found elsewhere in the mathematics literature - round out this concise work. After a good introduction giving background material, the topics are presented in a systematic fashion to engage a wide readership of researchers and graduate students.
Rezensionen / Stimmen
"The authors review the major papers in the topic that have been written during the last two decades, giving a comprehensive bibliography.this is a very important survey of the subject."
-Mathematical Reviews
Reihe
Auflage
Softcover reprint of the original 1st ed. 2000
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 15 mm
Gewicht
ISBN-13
978-1-4612-7094-2 (9781461270942)
DOI
10.1007/978-1-4612-1324-6
Schweitzer Klassifikation
1. Introduction.- 2. Generalities on G/B and G/Q.- 3. Specifics for the Classical Groups.- 4. The Tangent Space and Smoothness.- 5. Root System Description of T(w, ?).- 6. Rational Smoothness and Kazhdan-Lusztig Theory.- 7. Nil-Hecke Ring and the Singular Locus of X(w).- 8. Patterns, Smoothness and Rational Smoothness.- 9. Minuscule and cominuscule G/P.- 10. Rank Two Results.- 11. Related Combinatorial Results.- 12. Related Varieties.- 13. Addendum.