[see attached for complete text]
{\it Singular Loci of Schubert Varieties} is a unique work at the
crossroads of representation theory, algebraic geometry, and
combinatorics. Over the past 20 years, many research articles have
been written on the subject in notable journals. In this work, the
authors have recreated and restructured the various theories and
approaches of those articles and present a clearer understanding of
this important subdiscipline of Schubert varieties---namely singular
loci.
Key features of this work include:
Rezensionen / Stimmen
"The authors review the major papers in the topic that have been written during the last two decades, giving a comprehensive bibliography.this is a very important survey of the subject."
-Mathematical Reviews
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 20 mm
Gewicht
ISBN-13
978-0-8176-4092-7 (9780817640927)
DOI
10.1007/978-1-4612-1324-6
Schweitzer Klassifikation
1. Introduction.- 2. Generalities on G/B and G/Q.- 3. Specifics for the Classical Groups.- 4. The Tangent Space and Smoothness.- 5. Root System Description of T(w, ?).- 6. Rational Smoothness and Kazhdan-Lusztig Theory.- 7. Nil-Hecke Ring and the Singular Locus of X(w).- 8. Patterns, Smoothness and Rational Smoothness.- 9. Minuscule and cominuscule G/P.- 10. Rank Two Results.- 11. Related Combinatorial Results.- 12. Related Varieties.- 13. Addendum.