These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The former studies the ideal of polynomial identities satisfied by a ring. The latter studies the properties of rings which satisfy a polynomial identity.
The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
The intended audience is graduate students in algebra, and researchers in algebra, combinatorics and invariant theory.
Rezensionen / Stimmen
"This book is an excellent overview of the field of integral geometry with emphasis on the functional analytic and differential geometric aspects. The author proves theorems for some of the most important Radon transforms, including transforms on hyperplanes, k-planes, lines, and spheres, and he investigates incomplete (limited) data problems including microlocal analytic issues.This book contains many treasures in integral geometry.and it belongs on the shelf of any analyst or geometer who would like to see how deep functional analysis and differential geometry are used to solve important problems in integral geometry." -Mathematical Reviews
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 16 mm
Gewicht
ISBN-13
978-3-7643-7129-6 (9783764371296)
DOI
10.1007/978-3-0348-7941-5
Schweitzer Klassifikation
1 Distributions and Fourier Transform.- 1.1 Introduction.- 1.2 Distributions and generalized functions.- 1.3 Tempered distributions.- 1.4 Homogeneous distributions.- 1.5 Manifolds and differential forms.- 1.6 Push down and pull back.- 1.7 More on the Fourier transform.- 1.8 Bandlimited functions and interpolation.- 2 Radon Transform.- 2.1 Properties.- 2.2 Inversion formulae.- 2.3 Alternative formulae.- 2.4 Range conditions.- 2.5 Frequency analysis.- 2.6 Radon transform of differential forms.- 3 The Funk Transform.- 3.1 Factorable mappings.- 3.2 Spaces of constant curvature.- 3.3 Inversion of the Funk transform.- 3.4 Radon's inversion via Funk's inversion.- 3.5 Unified form.- 3.6 Funk-Radon transform and wave fronts.- 3.7 Integral transform of boundary discontinuities.- 3.8 Nonlinear artifacts.- 3.9 Pizetti formula for arbitrary signature.- 4 Reconstruction from Line Integrals.- 4.1 Pencils of lines and John's equation.- 4.2 Sources at infinity.- 4.3 Reduction to the Radon transform.- 4.4 Rays tangent to a surface.- 4.5 Sources on a proper curve.- 4.6 Reconstruction from plane integrals of sources.- 4.7 Line integrals of differential forms.- 4.8 Exponential ray transform.- 4.9 Attenuated ray transform.- 4.10 Inversion formulae.- 4.11 Range conditions.- 5 Flat Integral Transform.- 5.1 Reconstruction problem.- 5.2 Odd-dimensional subspaces.- 5.3 Even dimension.- 5.4 Range of the flat transform.- 5.5 Duality for the Funk transform.- 5.6 Duality in Euclidean space.- 6 Incomplete Data Problems.- 6.1 Completeness condition.- 6.2 Radon transform of Gabor functions.- 6.3 Reconstruction from limited angle data.- 6.4 Exterior problem.- 6.5 The parametrix method.- 7 Spherical Transform and Inversion.- 7.1 Problems.- 7.2 Arc integrals in the plane.- 7.3 Hemispherical integralsin space.- 7.4 Incomplete data.- 7.5 Spheres centred on a sphere.- 7.6 Spheres tangent to a manifold.- 7.7 Characteristic Cauchy problem.- 7.8 Fundamental solution for the adjoint operator.- 8 Algebraic Integral Transform.- 8.1 Problems.- 8.2 Special cases.- 8.3 Multiplicative differential equations.- 8.4 Funk transform of Leray forms.- 8.5 Differential equations for hypersurface integrals.- 8.6 Howard's equations.- 8.7 Range of differential operators.- 8.8 Decreasing solutions of Maxwell's system.- 8.9 Symmetric differential forms.- 9 Notes.- Notes to Chapter 1.- Notes to Chapter 2.- Notes to Chapter 3.- Notes to Chapter 4.- Notes to Chapter 5.- Notes to Chapter 6.- Notes to Chapter 7.- Notes to Chapter 8.