This book examines holomorphic Morse inequalities and the asymptotic expansion of the Bergman kernel on manifolds by using the heat kernel. The point of view comes from local index theory. The book opens perspectives on several active areas of research in complex, Kähler and symplectic geometry. A large number of applications are also included, such as an analytic proof of Kodaira's embedding theorem, a solution of the Grauert-Riemenschneider and Shiffman conjectures, compactification of complete Kähler manifolds of pinched negative curvature, Berezin-Toeplitz quantization, weak Lefschetz theorems, and asymptotics of the Ray-Singer analytic torsion.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für Beruf und Forschung
Research
Illustrationen
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 30 mm
Gewicht
ISBN-13
978-3-7643-8096-0 (9783764380960)
DOI
10.1007/978-3-7643-8115-8
Schweitzer Klassifikation
Demailly's Holomorphic Morse Inequalities.- Characterization of Moishezon Manifolds.- Holomorphic Morse Inequalities on Non-compact Manifolds.- Asymptotic Expansion of the Bergman Kernel.- Kodaira Map.- Bergman Kernel on Non-compact Manifolds.- Toeplitz Operators.- Bergman Kernels on Symplectic Manifolds.