Taking into account the various criss-crossing among mathematical subject, Physical Combinatorics presents new results and exciting ideas from three viewpoints; representation theory, integrable models, and combinatorics. This work is concerned with combinatorial aspects arising in the theory of exactly solvable models and representation theory. Recent developments in integrable models reveal an unexpected link between representation theory and statistical mechanics through combinatorics.
Reihe
Auflage
Sprache
Verlagsort
Zielgruppe
Für höhere Schule und Studium
Für Beruf und Forschung
Research
Produkt-Hinweis
Fadenheftung
Gewebe-Einband
Illustrationen
IX, 317 p.
88 black & white illustrations, 1 black & white halftones, 87 black & white line drawings
Maße
Höhe: 241 mm
Breite: 160 mm
Dicke: 24 mm
Gewicht
ISBN-13
978-0-8176-4175-7 (9780817641757)
DOI
10.1007/978-1-4612-1378-9
Schweitzer Klassifikation
Preface.-An Insertion Scheme for Cn Crystals.-On the Combinatorics of Forrester-Baxter Models.-Combinatorial R Matrices for a Family of Crystals: Cn(1) and A 2n-1(2) Cases.-Theta Functions Associated with Affine Root Systems and the Elliptic Ruijsenaars Operators.-A Generalization of the q-Saalschütz Sum and the Burge Transform.-The Bethe Equation at q=0, the Möbius Inversion Formula, and Weight Multiplicities I: The sl(2) Case.-Hidden E-Type Structures in Dilute A Models.-Canonical Basses of High-Level q-Deformed Fock Spaces and Kazhdan-Lusztig Polynomials.-Finite-Gap Difference Operators with Elliptic Coefficients and Their Spectral Curves.