This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle.
The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Zielgruppe
Für höhere Schule und Studium
Research
Illustrationen
22
22 s/w Abbildungen
X, 155 p. 22 illus.
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 10 mm
Gewicht
ISBN-13
978-3-642-31563-3 (9783642315633)
DOI
10.1007/978-3-642-31564-0
Schweitzer Klassifikation
1 Elliptic 3-manifolds and the Smale Conjecture.- 2 Diffeomorphisms and Embeddings of Manifolds.- 3 The Method of Cerf and Palais.- 4 Elliptic 3-manifolds Containing One-sided Klein Bottles.- 5 Lens Spaces