This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems.
First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples.
The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context.
Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds.
Reihe
Auflage
Softcover reprint of the original 1st ed. 2013
Sprache
Verlagsort
Zielgruppe
Für Beruf und Forschung
Research
Produkt-Hinweis
Broschur/Paperback
Klebebindung
Illustrationen
Maße
Höhe: 235 mm
Breite: 155 mm
Dicke: 12 mm
Gewicht
ISBN-13
978-94-6239-042-3 (9789462390423)
DOI
10.2991/978-94-6239-003-4
Schweitzer Klassifikation
Introduction.- Manifolds of bounded geometry.- Persistence of noncompact NHIMs.- Extension of results.